首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   228845篇
  免费   17516篇
  国内免费   9131篇
电工技术   12460篇
技术理论   24篇
综合类   14161篇
化学工业   38791篇
金属工艺   13151篇
机械仪表   14533篇
建筑科学   17570篇
矿业工程   7503篇
能源动力   6423篇
轻工业   13452篇
水利工程   3588篇
石油天然气   16619篇
武器工业   1647篇
无线电   25124篇
一般工业技术   27319篇
冶金工业   12807篇
原子能技术   2249篇
自动化技术   28071篇
  2024年   999篇
  2023年   3807篇
  2022年   6488篇
  2021年   9095篇
  2020年   7079篇
  2019年   6012篇
  2018年   6731篇
  2017年   7542篇
  2016年   6746篇
  2015年   8859篇
  2014年   11248篇
  2013年   13271篇
  2012年   14210篇
  2011年   15450篇
  2010年   13425篇
  2009年   12682篇
  2008年   12344篇
  2007年   11850篇
  2006年   12341篇
  2005年   10745篇
  2004年   7258篇
  2003年   6223篇
  2002年   5460篇
  2001年   4885篇
  2000年   5432篇
  1999年   6437篇
  1998年   5436篇
  1997年   4455篇
  1996年   4189篇
  1995年   3499篇
  1994年   2811篇
  1993年   1965篇
  1992年   1537篇
  1991年   1226篇
  1990年   933篇
  1989年   741篇
  1988年   538篇
  1987年   336篇
  1986年   278篇
  1985年   196篇
  1984年   139篇
  1983年   114篇
  1982年   124篇
  1981年   98篇
  1980年   70篇
  1979年   36篇
  1978年   26篇
  1977年   20篇
  1976年   35篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Quantitative cellular in vitro nanoparticle uptake measurements are possible with a large number of different techniques, however, all have their respective restrictions. Here, we demonstrate the application of synchrotron-based X-ray fluorescence imaging (XFI) on prostate tumor cells, which have internalized differently functionalized gold nanoparticles. Total nanoparticle uptake on the order of a few hundred picograms could be conveniently observed with microsamples consisting of only a few hundreds of cells. A comparison with mass spectroscopy quantification is provided, experimental results are both supported and sensitivity limits of this XFI approach extrapolated by Monte-Carlo simulations, yielding a minimum detectable nanoparticle mass of just 5 pg. This study demonstrates the high sensitivity level of XFI, allowing non-destructive uptake measurements with very small microsamples within just seconds of irradiation time.  相似文献   
962.
Hearing loss is the most common sensory disorder with ~466 million people worldwide affected, representing about 5% of the population. A substantial portion of hearing loss is genetic. Hearing loss can either be non-syndromic, if hearing loss is the only clinical manifestation, or syndromic, if the hearing loss is accompanied by a collage of other clinical manifestations. Usher syndrome is a syndromic form of genetic hearing loss that is accompanied by impaired vision associated with retinitis pigmentosa and, in many cases, vestibular dysfunction. It is the most common cause of deaf-blindness. Currently cochlear implantation or hearing aids are the only treatments for Usher-related hearing loss. However, gene therapy has shown promise in treating Usher-related retinitis pigmentosa. Here we review how the etiologies of Usher-related hearing loss make it a good candidate for gene therapy and discuss how various forms of gene therapy could be applied to Usher-related hearing loss.  相似文献   
963.
RNA-seq has been a powerful method to detect the differentially expressed genes/long non-coding RNAs (lncRNAs) in schizophrenia (SCZ) patients; however, due to overfitting problems differentially expressed targets (DETs) cannot be used properly as biomarkers. This study used machine learning to reduce gene/non-coding RNA features. Dorsolateral prefrontal cortex (dlpfc) RNA-seq data from 254 individuals was obtained from the CommonMind consortium. The average predictive accuracy for SCZ patients was 67% based on coding genes, and 96% based on long non-coding RNAs (lncRNAs). Machine learning is a powerful algorithm to reduce functional biomarkers in SCZ patients. The lncRNAs capture the characteristics of SCZ tissue more accurately than mRNA as the former regulate every level of gene expression, not limited to mRNA levels.  相似文献   
964.
Disulfiram (DSF), an irreversible aldehyde dehydrogenase inhibitor, is being used in anticancer therapy, as its effects in humans are known and less adverse than conventional chemotherapy. We explored the potential mechanism behind the cytotoxicity of DSF-Cu+/Cu2+ complexes in oral epidermoid carcinoma meng-1 (OECM-1) and human gingival epithelial Smulow-Glickman (SG) cells. Exposure to CuCl2 or CuCl slightly but concentration-dependently decreased cell viability, while DSF-Cu+/Cu2+ induced cell death in OECM-1 cells, but not SG cells. DSF-Cu+/Cu2+ also increased the subG1 population and decreased the G1, S, and G2/M populations in OECM-1 cells, but not SG cells, and suppressed cell proliferation in both OECM-1 and SG cells. ALDH enzyme activity was inhibited by CuCl and DSF-Cu+/Cu2+ in SG cells, but not OECM-1 cells. ROS levels and cellular senescence were increased in DSF-Cu+/Cu2+-treated OECM-1 cells, whereas they were suppressed in SG cells. DSF-Cu+/Cu2+ induced mitochondrial fission in OECM-1 cells and reduced mitochondrial membrane potential. CuCl2 increased but DSF- Cu2+ impaired oxygen consumption rates and extracellular acidification rates in OECM-1 cells. CuCl2 stabilized HIF-1α expression under normoxia in OECM-1 cells, and complex with DSF enhanced that effect. Levels of c-Myc protein and its phosphorylation at Tyr58 and Ser62 were increased, while levels of the N-terminal truncated form (Myc-nick) were decreased in DSF-Cu+/Cu2-treated OECM-1 cells. These effects were all suppressed by pretreatment with the ROS scavenger NAC. Overexpression of c-Myc failed to induce HIF-1α expression. These findings provide novel insight into the potential application of DSF-CuCl2 complex as a repurposed agent for OSCC cancer therapy.  相似文献   
965.
Bacterial communities associated with roots influence the health and nutrition of the host plant. However, the microbiome discrepancy are not well understood under different healthy conditions. Here, we tested the hypothesis that rhizosphere soil microbial diversity and function varies along a degeneration gradient of poplar, with a focus on plant growth promoting bacteria (PGPB) and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG (antibiotics resistance genes) annotation revealed that available potassium (AK) was correlated with microbial diversity and function. We proposed several microbes, Bradyrhizobium, Sphingomonas, Mesorhizobium, Nocardioides, Variovorax, Gemmatimonadetes, Rhizobacter, Pedosphaera, Candidatus Solibacter, Acidobacterium, and Phenylobacterium, as candidates to reflect the soil fertility and the plant health. The highest abundance of multidrug resistance genes and the four mainly microbial resistance mechanisms (antibiotic efflux, antibiotic target protection, antibiotic target alteration, and antibiotic target replacement) in healthy poplar rhizosphere, corroborated the relationship between soil fertility and microbial activity. This result suggested that healthy rhizosphere soil harbored microbes with a higher capacity and had more complex microbial interaction network to promote plant growing and reduce intracellular levels of antibiotics. Our findings suggested a correlation between the plant degeneration gradient and bacterial communities, and provided insight into the role of high-turnover microbial communities as well as potential PGPB as real-time indicators of forestry soil quality, and demonstrated the inner interaction contributed by the bacterial communities.  相似文献   
966.
Artificial domestication and improvement of the majority of crops began approximately 10,000 years ago, in different parts of the world, to achieve high productivity, good quality, and widespread adaptability. It was initiated from a phenotype-based selection by local farmers and developed to current biotechnology-based breeding to feed over 7 billion people. For most cereal crops, yield relates to grain production, which could be enhanced by increasing grain number and weight. Grain number is typically determined during inflorescence development. Many mutants and genes for inflorescence development have already been characterized in cereal crops. Therefore, optimization of such genes could fine-tune yield-related traits, such as grain number. With the rapidly advancing genome-editing technologies and understanding of yield-related traits, knowledge-driven breeding by design is becoming a reality. This review introduces knowledge about inflorescence yield-related traits in cereal crops, focusing on rice, maize, and wheat. Next, emerging genome-editing technologies and recent studies that apply this technology to engineer crop yield improvement by targeting inflorescence development are reviewed. These approaches promise to usher in a new era of breeding practice.  相似文献   
967.
TP53 gene mutations occur in 70% of oesophageal adenocarcinomas (OACs). Given the central role of p53 in controlling cellular response to therapy we investigated the role of mutant (mut-) p53 and SLC7A11 in a CRISPR-mediated JH-EsoAd1 TP53 knockout model. Response to 2 Gy irradiation, cisplatin, 5-FU, 4-hydroxytamoxifen, and endoxifen was assessed, followed by a TaqMan OpenArray qPCR screening for differences in miRNA expression. Knockout of mut-p53 resulted in increased chemo- and radioresistance (2 Gy survival fraction: 38% vs. 56%, p < 0.0001) and in altered miRNA expression levels. Target mRNA pathways analyses indicated several potential mechanisms of treatment resistance. SLC7A11 knockdown restored radiosensitivity (2 Gy SF: 46% vs. 73%; p = 0.0239), possibly via enhanced sensitivity to oxidative stress. Pathway analysis of the mRNA targets of differentially expressed miRNAs indicated potential involvement in several pathways associated with apoptosis, ribosomes, and p53 signaling pathways. The data suggest that mut-p53 in JH-EsoAd1, despite being classified as non-functional, has some function related to radio- and chemoresistance. The results also highlight the important role of SLC7A11 in cancer metabolism and redox balance and the influence of p53 on these processes. Inhibition of the SLC7A11-glutathione axis may represent a promising approach to overcome resistance associated with mut-p53.  相似文献   
968.
Increasing numbers of miRNAs have been observed as oncogenes or tumor suppressors in colorectal cancer (CRC). It was recently reported that hsa-miR-106b-5p (miR-106b) promoted CRC cell migration and invasion. However, there were also studies showing contradictory results. Therefore, in the present study, we further explore the role of miR-106b and its downstream networks in the carcinogenesis of CRC. We observed that the expression of miR-106b is significantly increased in Pan-Cancer and CRC tissues compared with normal tissues from The Cancer Genome Atlas (TCGA) database. Furthermore, we used Transwell, Cell Counting Kit-8, and colony formation assays to clarify that miR-106b promotes the migratory, invasive, and proliferative abilities of CRC cells. For the first time, we systematically screened the target mRNAs and lncRNAs of miR-106b using TCGA database and the bioinformatics algorithms. Dual-luciferase reporter assay confirmed that NR2F2-AS1 and PLEKHO2 are the direct targets of miR-106b. Furthermore, NR2F2-AS1 acts as a competing endogenous RNA (ceRNA) to regulate PLEKHO2 expression by sponging miR-106b. The results of Gene set enrichment analysis (GSEA) and Western blot indicated that they play important roles in CRC progression by regulating MAPK pathway. Thus, miR-106b/NR2F2-AS1/PLEKHO2/MAPK signaling axis may suggest the potential usage in CRC treatment.  相似文献   
969.
High performance fibers with high strength and toughness have great potential in composites, but contradiction between tensile strength and elongation at break makes the preparation to become a current challenge. Herein, an asymmetric structure of more flexible diamine, 3,4′-diaminodiphenyl ether (3,4′-ODA), is introduced into heterocyclic aramid (PBIA) fibers to replace rigid symmetric p-phenylenediamine (PDA). By studying the properties of copolymer (mPEBA) fibers with different ratios of diamine, it is found that the mPEBA fiber reached the optimal mechanical properties with the 30% content of 3,4′-ODA. Compared with homopolymerized heterocyclic aramid fibers, the tensile strength and elongation at break of mPEBA fiber are improved by 26.2% and 38.7%, respectively. Results of X-ray diffraction show that the introduction of 3,4′-ODA structure can increase stretchability of mPEBA fibers, improving the orientation degree during hot-drawing. Molecular dynamics simulations confirm that 3,4′-ODA structure undergoes a conformation transformation to form a straightened chain during hot-drawing, while symmetrical 4,4′-diaminodiphenyl ether (4,4′-ODA) cannot form the same conformation. The misplaced-nunchaku structure is formed based on the special meta-para position of 3,4′-ODA, achieving the synergy of high strength and high toughness.  相似文献   
970.
Polymer systems have typical multiscale characteristics, both in space and time. The mesoscopic properties of polymers are difficult to describe through traditional experimental approaches. Dissipative particle dynamics (DPD) is a simulation method used for solving mesoscale problems of complex fluids and soft matter. The mesoscopic properties of polymer systems, such as conformation, dynamics, and transport properties, have been studied extensively using DPD. This paper briefly summarizes the application of DPD to research involving microchannel flow, electrospinning, free-radical polymerization, polymer self-assembly processes, polymer electrolyte fuel cells, and biomedical materials. The main features and possible development avenues of DPD are described as well.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号