首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   282篇
  免费   28篇
  国内免费   1篇
电工技术   2篇
综合类   2篇
化学工业   79篇
金属工艺   6篇
机械仪表   11篇
建筑科学   18篇
能源动力   1篇
轻工业   55篇
石油天然气   2篇
无线电   13篇
一般工业技术   58篇
冶金工业   37篇
原子能技术   1篇
自动化技术   26篇
  2024年   1篇
  2023年   12篇
  2022年   5篇
  2021年   11篇
  2020年   11篇
  2019年   6篇
  2018年   8篇
  2017年   12篇
  2016年   16篇
  2015年   14篇
  2014年   22篇
  2013年   16篇
  2012年   21篇
  2011年   22篇
  2010年   10篇
  2009年   12篇
  2008年   17篇
  2007年   15篇
  2006年   9篇
  2005年   4篇
  2004年   12篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   1篇
  1998年   18篇
  1997年   11篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1976年   1篇
排序方式: 共有311条查询结果,搜索用时 15 毫秒
301.
This paper introduces a surrogate model based algorithm for computationally expensive mixed-integer black-box global optimization problems with both binary and non-binary integer variables that may have computationally expensive constraints. The goal is to find accurate solutions with relatively few function evaluations. A radial basis function surrogate model (response surface) is used to select candidates for integer and continuous decision variable points at which the computationally expensive objective and constraint functions are to be evaluated. In every iteration multiple new points are selected based on different methods, and the function evaluations are done in parallel. The algorithm converges to the global optimum almost surely. The performance of this new algorithm, SO-MI, is compared to a branch and bound algorithm for nonlinear problems, a genetic algorithm, and the NOMAD (Nonsmooth Optimization by Mesh Adaptive Direct Search) algorithm for mixed-integer problems on 16 test problems from the literature (constrained, unconstrained, unimodal and multimodal problems), as well as on two application problems arising from structural optimization, and three application problems from optimal reliability design. The numerical experiments show that SO-MI reaches significantly better results than the other algorithms when the number of function evaluations is very restricted (200–300 evaluations).  相似文献   
302.
303.
Digital light processing (DLP) enables the fabrication of complex 3D structures based on a photopolymerizable resin usually containing a photo initiator and an UV or photo absorber. The resin and thus the final properties of the printed structures can be adjusted by adding fillers like bioceramic powders relevant for bone-regeneration applications. Herein, a water-based and biocompatible poly(ethylene glycol diacrylate) (PEGDA) resin containing the photo initiator lithium-phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) enables the production of 3D structures via DLP. The addition of calcium magnesium phosphate cement (CMPC) powder, acting as photo absorber, leads to higher accuracy of the final structures. After curing the printed construct in a diammonium–hydrogen phosphate (DAHP) bath for hardening, the resulting mechanical properties can be adjusted without post-process sintering. Solid loading of up to 40 wt% CMPC powder is possible, and the resins are investigated regarding their rheological behavior and printability. The resulting constructs are analyzed in respect to their surface morphology using scanning electron microscope (SEM), porosity, phase composition using X-ray diffraction (XRD) methods, as well as mechanical properties influenced by the hardening process using DAHP for different durations.  相似文献   
304.

Document stores have gained popularity among NoSQL systems mainly due to the semi-structured data storage structure and the enhanced query capabilities. The database design in document stores expands beyond the first normal form by encouraging de-normalization through nesting. This hinders the process, as the number of alternatives grows exponentially with multiple choices in nesting (including different levels) and referencing (including the direction of the reference). Due to this complexity, document store data design is mostly carried out in trial-and-error or ad-hoc rule-based approaches. However, the choices affect multiple, often conflicting, aspects such as query performance, storage space, and complexity of the documents. To overcome these issues, in this paper, we apply multicriteria optimization. Our approach is driven by a query workload and a set of optimization objectives. First, we formalize a canonical model to represent alternative designs and introduce an algebra of transformations that can systematically modify a design. Then, using these transformations, we implement a local search algorithm driven by a loss function that can propose near-optimal designs with high probability. Finally, we compare our prototype against an existing document store data design solution purely driven by query cost, where our proposed designs have better performance and are more compact with less redundancy.

  相似文献   
305.
Additive manufacturing technologies, particularly electron beam powder bed fusion (PBF-EB/M), are becoming increasingly important for the processing of intermetallic titanium aluminides. This study presents the effects of hot isostatic pressing (HIP) and subsequent two-step heat treatments on the microstructure and mechanical properties of the TNM-B1 alloy (Ti–43.5Al–4Nb–1Mo–0.1B) fabricated via PBF-EB/M. Adequate solution heat treatment temperatures allow the adjustment of fully lamellar (FL) and nearly lamellar (NL-β) microstructures. The specimens are characterized by optical microscopy and scanning electron microscopy (SEM), X-ray computed tomography (CT), X-ray diffraction (XRD), and electron backscatter diffraction (EBSD). The mechanical properties at ambient temperatures are evaluated via tensile testing and subsequent fractography. While lack-of-fusion defects are the main causes of failure in the as-built condition, the mechanical properties in the heat-treated conditions are predominantly controlled by the microstructure. The highest ultimate tensile strength is achieved after HIP due to the elimination of lack-of-fusion defects. The results reveal challenges originating from the PBF-EB/M process, for example, local variations in chemical composition due to aluminum evaporation, which in turn affect the microstructures after heat treatment. For designing suitable heat treatment strategies, particular attention should therefore be paid to the microstructural characteristics associated with additive manufacturing.  相似文献   
306.
A convenient synthesis of a broad series of thirteen examples of alkyne-spacer derivatives 2 from the well-known Sonogashira cross-coupling reaction on diazenyl-pyrazolo[1,5-a]pyrimidin-2-amine compounds 1 is reported. The reactivity of heterocycles 1 due the presence of selected electron-donor (EDG) and electron-withdrawing (EWG) groups attached to different alkynes was evaluated. Also, the reactional versatility due the position variation of the bromo atom at the scaffolds 1 was also investigated. In general, derivatives presented strong absorption bands at the 250–500 nm optical window and UV to cyan emission properties. Also, the redox analysis was recorded by electrochemical cyclic voltammetry technique. For HSA biomacromolecule assays, spectroscopic studies by UV-Vis, steady-state and time-resolved emission fluorescence, and molecular docking calculations evidenced the ability of each compound to establish interactions with human serum albumin (HSA). Finally, the behavior presented for this new class of heterocycles makes them a promising tool as optical sensors for albumins.  相似文献   
307.
Electron beam powder bed fusion (PBF-EB/M) has been attracting great research interest as a promising technology for additive manufacturing of titanium aluminide alloys. However, challenges often arise from the process-induced evaporation of aluminum, which is linked to the PBF-EB/M process parameters. This study applies different volumetric energy densities during PBF-EB/M processing to deliberately adjust the aluminum contents in additively manufactured Ti–43.5Al–4Nb–1Mo–0.1B (TNM-B1) samples. The specimens are subsequently subjected to hot isostatic pressing (HIP) and a two-step heat treatment. The influence of process parameter variation and heat treatments on microstructure and defect distribution are investigated using optical and scanning electron microscopy, as well as X-ray computed tomography (CT). Depending on the aluminum content, shifts in the phase transition temperatures can be identified via differential scanning calorimetry (DSC). It is confirmed that the microstructure after heat treatment is strongly linked to the PBF-EB/M parameters and the associated aluminum evaporation. The feasibility of producing locally adapted microstructures within one component through process parameter variation and subsequent heat treatment can be demonstrated. Thus, fully lamellar and nearly lamellar microstructures in two adjacent component areas can be adjusted, respectively.  相似文献   
308.
309.
Objective

To provide respiratory motion correction for free-breathing myocardial T1 mapping using a pilot tone (PT) and a continuous golden-angle radial acquisition.

Materials and methods

During a 45 s prescan the PT is acquired together with a dynamic sagittal image covering multiple respiratory cycles. From these images, the respiratory heart motion in head-feet and anterior–posterior direction is estimated and two linear models are derived between the PT and heart motion. In the following scan through-plane motion is corrected prospectively with slice tracking based on the PT. In-plane motion is corrected for retrospectively. Our method was evaluated on a motion phantom and 11 healthy subjects.

Results

Non-motion corrected measurements using a moving phantom showed T1 errors of 14 ± 4% (p < 0.05) compared to a reference measurement. The proposed motion correction approach reduced this error to 3 ± 4% (p < 0.05). In vivo the respiratory motion led to an overestimation of T1 values by 26 ± 31% compared to breathhold T1 maps, which was successfully corrected to an average difference of 3 ± 2% (p < 0.05) between our free-breathing approach and breathhold data.

Discussion

Our proposed PT-based motion correction approach allows for T1 mapping during free-breathing with the same accuracy as a corresponding breathhold T1 mapping scan.

  相似文献   
310.
Artificial active matter often self-propels by creating gradients of one or more species or quantities. For chemical swimmers, most frequently either O2 or H+ that are created in certain catalytic reactions are causing the interfacial flows which drive the self-propulsion. While the palette of reactions is extending constantly, especially toward more bio-compatible fuels, the depletion of species is often overlooked. Here, the photodeposition of metal species on BiVO4 micro swimmers is considered. During the photodeposition reaction, metal ions are removed from the solution creating a depleted region around the particle. The ability of this depletion to drive active motion of artificial micro swimmers, as well as the influences of different metal ions and counter ions on the motion are investigated and cross compared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号