首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1025篇
  免费   31篇
  国内免费   1篇
电工技术   13篇
化学工业   158篇
金属工艺   9篇
机械仪表   7篇
建筑科学   69篇
矿业工程   8篇
能源动力   12篇
轻工业   106篇
水利工程   8篇
无线电   91篇
一般工业技术   114篇
冶金工业   334篇
原子能技术   5篇
自动化技术   123篇
  2023年   6篇
  2022年   14篇
  2021年   21篇
  2020年   14篇
  2019年   12篇
  2018年   13篇
  2017年   13篇
  2016年   14篇
  2015年   15篇
  2014年   30篇
  2013年   60篇
  2012年   30篇
  2011年   38篇
  2010年   34篇
  2009年   27篇
  2008年   32篇
  2007年   40篇
  2006年   29篇
  2005年   41篇
  2004年   27篇
  2003年   31篇
  2002年   24篇
  2001年   25篇
  2000年   10篇
  1999年   19篇
  1998年   100篇
  1997年   59篇
  1996年   34篇
  1995年   27篇
  1994年   24篇
  1993年   16篇
  1992年   11篇
  1991年   7篇
  1990年   13篇
  1989年   9篇
  1988年   5篇
  1987年   6篇
  1985年   8篇
  1984年   9篇
  1982年   8篇
  1981年   6篇
  1980年   6篇
  1979年   6篇
  1978年   8篇
  1977年   12篇
  1976年   11篇
  1975年   8篇
  1974年   7篇
  1971年   4篇
  1965年   4篇
排序方式: 共有1057条查询结果,搜索用时 15 毫秒
21.
This work is devoted to the three‐dimensional, direct modeling of porosity and specific surface development during the gasification of a char particle. The model was developed for heterogeneous reactions occurring inside a char particle in a kinetically controlled regime. The main goal of this work is to analyze the impact of different pore size distributions on the particle carbon conversion rate. In particular, it is shown that under certain conditions the outer particle surface can influence the specific surface area. In this context the possible adaptation of the parameter ψ from the random pore model (RPM) developed by Bhatia and Perlmutter is explained. The results of simulations are compared against the RPM and discussed. Additionally, based on the results of simulations, the physics behind several input parameters used by the RPM are explored. Finally, the possible fragmentation of a chemically reacting char particle during its gasification in dependence of instantaneous porosity was investigated numerically. It was shown that the earliest fragmentation occurs at a carbon conversion of about 0.5–0.6 due to the disaggregation of the pore walls. The results are discussed and compared implicitly with data published in the literature. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1638–1647, 2017  相似文献   
22.
Among the attempts to measure particles produced in the cold fusion of deuterium in palladium metal is the mass spectrometric observation of tritium. An experiment which has been reported in the popular press involves attaching a hollow Pd electrode to a vacuum chamber and measuring the tritium produced during electrolysis using a mass spectrometer. We present data demonstrating that mass 5 and 6, which could be mistaken for the ions DT+ and T2 +, can arise from ion-molecule reactions in the ionizer of the mass spectrometer giving the ions HD2 + and D3 +. With H2 and D2 present in the vacuum chamber, there are at least eight reactions which lead to these triatomic species, and these may contribute to a complex time and pressure dependence of the signals.  相似文献   
23.
The metabolic syndrome (MetS) is a cluster of cardiovascular risk factors characterised by central obesity, atherogenic dyslipidaemia, and changes in the circulating lipidome; the underlying mechanisms that lead to this lipid remodelling have only been partially elucidated. This study used an integrated “omics” approach (untargeted whole serum lipidomics, targeted proteomics, and lipoprotein lipidomics) to study lipoprotein remodelling and HDL composition in subjects with central obesity diagnosed with MetS (vs. controls). Compared with healthy subjects, MetS patients showed higher free fatty acids, diglycerides, phosphatidylcholines, and triglycerides, particularly those enriched in products of de novo lipogenesis. On the other hand, the “lysophosphatidylcholines to phosphatidylcholines” and “cholesteryl ester to free cholesterol” ratios were reduced, pointing to a lower activity of lecithin cholesterol acyltransferase (LCAT) in MetS; LCAT activity (directly measured and predicted by lipidomic ratios) was positively correlated with high-density lipoprotein cholesterol (HDL-C) and negatively correlated with body mass index (BMI) and insulin resistance. Moreover, many phosphatidylcholines and sphingomyelins were significantly lower in the HDL of MetS patients and strongly correlated with BMI and clinical metabolic parameters. These results suggest that MetS is associated with an impairment of phospholipid metabolism in HDL, partially led by LCAT, and associated with obesity and underlying insulin resistance. This study proposes a candidate strategy to use integrated “omics” approaches to gain mechanistic insights into lipoprotein remodelling, thus deepening the knowledge regarding the molecular basis of the association between MetS and atherosclerosis.  相似文献   
24.
Composites of two hot melt adhesives based on co‐polyamides, one high viscosity (coPA_A), the other low viscosity (coPA_B), and multiwalled carbon nanotubes (MWCNTs) were prepared using twin‐screw extrusion via dilution of masterbatches. Examination of these composites across the length scales confirmed that the MWCNTs were uniformly dispersed and distributed in the polymer matrices, although some micron size agglomerations were also observed. A rheological percolation was determined from oscillatory rheology measurements at a mass fraction of MWCNTs below 0.01 for coPA_B and, between 0.01 and 0.02 for coPA_A. Significant increases in complex viscosity and storage modulus confirmed the “pseudo‐solid” like behavior of the composite materials. Electrical percolation, determined from dielectric spectroscopy was, found to be at 0.03 and 0.01 MWCNT mass fraction for coPA_A and coPA_B based composites, respectively. Addition of MWCNTs resulted in heterogeneous nucleation and altered the crystallization kinetics of both copolymers. Indirect evidence from contact angle measurements and surface energy calculations confirmed that MWCNT addition enhanced the adhesive properties of coPA_B to a level similar to coPA_A. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45999.  相似文献   
25.
Amorphous solid water (ASW) is a disordered version of ice created by vapor deposition onto a cold substrate (typically less than 130 K). It has a higher free energy than the crystalline phase of ice, and when heated above its glass transition temperature, it transforms into a metastable supercooled liquid. This unusual form of water exists on earth only in laboratories, after preparation with highly specialized equipment. It is thus fair to ask why there is any interest in studying such an esoteric material. Much of the scientific interest results from the ability to use ASW as a model system for exploring the physical and reactive properties of liquid water and aqueous solutions. ASW is also thought to be the predominant form of water in the extremely cold temperatures of many interstellar and planetary environments. In addition, ASW is a convenient model system for studying the stability of amorphous and glassy materials as well as the properties of highly porous materials. A fundamental understanding of such properties is invaluable in a diverse range of applications, including cryobiology, food science, pharmaceuticals, astrophysics, and nuclear waste storage, among others. Over the past 15 years, we have used molecular beams and surface science techniques to probe the thermal and nonthermal properties of nanoscale films of ASW. In this Account, we present a survey of our research on the properties of ASW using this approach. We use molecular beams to precisely control the deposition conditions (flux, incident energy, and incident angle) and create compositionally tailored, nanoscale films of ASW at low temperatures. To study the transport properties (viscosity and diffusivity), we heat the amorphous films above their glass transition temperature, T(g), at which they transform into deeply supercooled liquids prior to crystallization. The advantage of this approach is that at temperatures near T(g), the viscosity is approximately 15 orders of magnitude larger than that of a normal liquid. As a result, the crystallization kinetics are dramatically slowed, increasing the time available for experiments. For example, near T(g), a water molecule moves less than the distance of a single molecule on a typical laboratory time scale (~1000 s). For this reason, nanoscale films help to probe the behavior and reactions of supercooled liquids at these low temperatures. ASW films can also be used for investigating the nonthermal reactions relevant to radiolysis.  相似文献   
26.
In biomass processing fluidized beds are used to process granular materials where particles typically possess elongated shapes. However, for simplicity, in computer simulations particles are often considered spherical, even though elongated particles experience more complex particle– particle interactions as well as different hydrodynamic forces. The exact effect of these more complex interactions in dense fluidized suspensions is still not well understood. In this study we use the magnetic particle tracking technique to compare the fluidization behavior of spherical particles to that of elongated particles. We found a considerable difference between fluidization behavior of spherical versus elongated particles in the time-averaged particle velocity field as well as in the time-averaged particle rotational velocity profile. Moreover, we studied the effect of fluid velocity and the particle's aspect ratio on the particle's preferred orientation in different parts of the bed, which provides new insight in the fluidization behavior of elongated particles.  相似文献   
27.
We have previously shown that in HeLa cells treated with a variety of agents there is an increase in cell surface peptidase (CSP) activity in those cells undergoing apoptosis. The increase in CSP activity observed in UVB-irradiated cells undergoing apoptosis was unaffected when the cultures were treated with the aminopeptidase inhibitor bestatin, and matrix metalloprotease inhibitor BB3103, but greatly enhanced when treated with the caspase 3 inhibitor-DEVD, and reduced in the presence of the poly(ADP-ribose) polymerase (PARP) inhibitor-3-aminobenzamide (3AB). Neither 3AB nor DEVD had an effect on the gross morphology of the apoptotic cells observed under electron microscopy, nor did they have an effect on phosphatidylserine eversion on the cell membrane, or that of PARP cleavage. All the agents except for DEVD had no effect on the level of caspase 3 activity in the cells. The results suggest that other caspases may cleave PARP in these cells. Both 3AB and DEVD treatment reduced the level of actin cleavage seen in the apoptotic cells. The increase in CSP activity observed in cells undergoing UVB-induced apoptosis appears to involve PARP but not caspase 3.  相似文献   
28.
Intensified heat treatment, using direct contact condensation (DCC), is applied in the production of dairy products to ensure a high level of food safety. The key challenge with DCC is the fouling due to the protein reactions that limits operational efficiency and sustainability. Using a condensation regime map can improve operational decision-making. Pilot plant scale experiments were conducted for a wide range of steam mass fluxes and inlet temperatures at high and low channel pressures. High-speed images were recorded and analyzed to obtain penetration lengths and plume area. The experimental data and image analysis supplemented with temperature and pressure measurement, were processed using machine learning (ML) to develop a data driven model to predict the regime maps. The linear discriminant analysis (LDA) was found to be the most suitable model. From the ML models it was also found that the best parameters to make a condensation regime map are the steam pressure, channel pressure, subcooling temperature, water Prandtl number, and the relative velocity ratio between gas and liquid. The condensation outcomes were presented with various two-dimensional regime maps. New regime maps are proposed using the Prandtl number and velocity ratio as dimensionless parameters.  相似文献   
29.
Lactate dehydrogenases are of considerable interest as stereospecificcatalysts in the chemical preparation of enantiomerically pure-hydroxyacid synthons. For such applications in synthetic organicchemistry it would be desirable to have enzymes which tolerateelevated temperatures for prolonged reaction times, to increaseproductivity and to extend then applicability to poor substrates.Here, two examples are reported of significant thermostabilizations,induced by sitedirected mutagenesis, of an already thermostableprotein, the L-lactate dehydrogenase (EC 1.1.1.27 [EC] , 35 kDa permonomer subunit) from Bacillus stearothermophilus. Thermal inactivationof this enzyme is accompanied by irreversible unfolding of thenative protein structure. The replacement of Argl71 by Tyr stabilizesthe enzyme against thermal inactivation and unfolding. Thisstabilizing effect appears to be based on improved interactionsbetween the subunits in the core of the active dimeric or tetramericforms of the enzyme. The thermal stability of L-lactate dehydrogenasevariants with an active site Arg residue, either in the 171(wild-type) or in the 102 position, is further increased bysulfate ions. The two stabilizing effects are additive, as foundfor the Argl71Tyr/ Gln1O2Arg double mutant, for which the stabilityof the protein in 100 mM sulfate solution reaches that of L-lactatedehydrogenases from extreme thermophiles. All mutant proteinsretain significant catalytic activity, both in the presenceand absence of stnhilfoing salts, and are viable catalysts inpreparative scale reactions.  相似文献   
30.
The de novo design of a molecular adapter for directed associationand covalent linkage of two polypeptides is presented. Usingpeptides containing charged amino acid residues and an additionalcysteine residue (AlaCysLys8 and AlaCysGlu8) we demonstratethat the electrostatic interaction promotes the associationof two synthetic peptides and, subsequently, disulfide bondformation. The reaction depends on both the redox potentialand on the ionic strength of the buffer. Varying the redox potential,the interaction of the peptides was quantified by a G0' of 6.6± 0.2 kcal/mol. Heterodimerization of the peptides ishighly specific, a competition of association by other cysteinecontaining compounds could not be observed. Two proteins comprisingcysteine-containing polyionic fusion peptides, a modified Fabfragment and an -glucosidase fusion, could be specifically conjugatedby directed association and subsequent disulfide bond formation.Both proteins retain their functional characteristics withinthe bifunctional conjugate: enzymatic activity of the glucosidaseand antigen-binding capacity of the Fab fragment are equivalentto the non-conjugated components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号