首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5144篇
  免费   181篇
  国内免费   26篇
电工技术   77篇
综合类   8篇
化学工业   1010篇
金属工艺   162篇
机械仪表   120篇
建筑科学   54篇
矿业工程   16篇
能源动力   314篇
轻工业   232篇
水利工程   36篇
石油天然气   20篇
无线电   676篇
一般工业技术   1193篇
冶金工业   742篇
原子能技术   34篇
自动化技术   657篇
  2023年   73篇
  2022年   106篇
  2021年   183篇
  2020年   155篇
  2019年   134篇
  2018年   181篇
  2017年   168篇
  2016年   199篇
  2015年   114篇
  2014年   192篇
  2013年   431篇
  2012年   224篇
  2011年   239篇
  2010年   205篇
  2009年   276篇
  2008年   180篇
  2007年   134篇
  2006年   134篇
  2005年   114篇
  2004年   100篇
  2003年   102篇
  2002年   91篇
  2001年   72篇
  2000年   66篇
  1999年   71篇
  1998年   145篇
  1997年   111篇
  1996年   122篇
  1995年   84篇
  1994年   84篇
  1993年   80篇
  1992年   60篇
  1991年   69篇
  1990年   70篇
  1989年   47篇
  1988年   46篇
  1987年   45篇
  1986年   42篇
  1985年   47篇
  1984年   31篇
  1983年   25篇
  1982年   26篇
  1981年   36篇
  1980年   20篇
  1979年   31篇
  1978年   31篇
  1977年   28篇
  1976年   34篇
  1975年   16篇
  1973年   13篇
排序方式: 共有5351条查询结果,搜索用时 2 毫秒
61.
Sensitivity analysis of handoff algorithms on CDMA forward link   总被引:3,自引:0,他引:3  
We analyze the performance of different handoff algorithms on the forward link or downlink of a code-division multiple-access (CDMA) cellular system. Unlike the reverse link, soft handoff on the forward link requires additional resources such as CDMA codes and transmit power and also causes additional interference. If handoff requests can be processed and completed instantaneously, transmission from the base station with the best link to the user would achieve a significant fraction of the macrodiversity gain without utilizing additional resources. However, in practical systems, there is a nonzero handoff completion delay and soft handoff provides the required robustness to delays, although it comes at the expense of additional network resources. Thus, there is a tradeoff between the extent of soft handoff required and the handoff execution delay. We compare the performance of hard and soft handoff schemes and study their sensitivity to the delay in the execution of the handoff. Outage probability and the total average power required are used as performance metrics. We present an analytical framework to study this tradeoff and also discuss simulation results with field data. The results provide insights on the conditions under which soft handoff can be eliminated and on the effect of relevant handoff thresholds on the performance.  相似文献   
62.
Optimal power control is of great importance for CDMA systems and it can be controlled to provide the desired quality of service (QoS) to mobile hosts in a cellular radio system. The power levels of all the mobile hosts are determined and constantly tuned in order to achieve the required SINR (signal to interference and noise ratio) which changes dynamically. The SINR of all the K mobiles in a cell can be expressed in the form of a k-dimensional vector. It helps determine the operating point of the system and hence it is constantly monitored and updated due to the variability in the wireless channel conditions and user mobility. We view this continuously changing vector as the motion of a point in a higher dimensional Euclidean space, called the QoS space. We apply vector quantization technique to shrink the infinite-point space to a finite-point space by partitioning the former into N regions such that the points within a region reflect almost similar system performance and are identified by what we call a QoS index. We show how the system operating point can be mapped to one of the QoS indices. The location of the point or the region of operability in the QoS space conveys the system status in terms of the current load and the QoS being delivered. The dynamism in the system's input conditions due to wireless link characteristics and user mobility acts like an opposing force against which the system has to operate. The system reacts to all such changes preventing it from going into a region with an undesirable QoS index. We show how the apriori knowledge of the operating region helps in decision making pertaining to call admission and resource allocation in CDMA systems. Mainak Chatterjee received his Ph.D. from the department of Computer Science and Engineering at the University of Texas at Arlington in 2002. Prior to that, he completed his B.Sc. with Physics (Hons) from the University of Calcutta in 1994 and M.E. in Electrical Communication Engineering from the Indian Institute of Science, Bangalore. He is currently an Assistant Professor in the department of Electrical and Computer Engineering at the University of Central Florida. His research interests include resource management and quality-of-service provisioning in wireless and cellular networks, sensor networks, CDMA data networking, media access control protocols, Internet traffic, and applied game theory. Sajal K. Das is a Professor of Computer Science and Engineering and also the Founding Director of the Center for Research in Wireless Mobility and Networking (CReWMaN) at the University of Texas at Arlington (UTA). His current research interests include resource and mobility management in wireless networks, mobile and pervasive computing, wireless multimedia and QoS provisioning, sensor networks, mobile Internet protocols, distributed processing and grid computing. He has published over 250 research papers, directed numerous funded projects, and holds 5 US patents in wireless mobile networks. He received the Best Paper Awards in ACM MobiCom'99, ICOIN-2001, ACM MSWIM-2000, and ACM/IEEE PADS'97. Dr. Das is also a recipeint of UTA's Outstanding Faculty Research Award in Computer Science in 2001 and 2003, and UTA's College of Engineering Excellence in Research Award in 2003. He serves on the Editorial Boards of IEEE Transactions on Mobile Computing, ACM/Kluwer Wireless Networks, Parallel Processing Letters, Journal of Parallel Algorithms and Applications. He served as General Chair of IEEE PerCom-2004, CIT-2003 and IEEE MASCOTS-2002; General Vice Chair of IEEE PerCom-2003, ACM MobiCom-2000 and HiPC 2000-01; General Chair of ACM WoWMoM 2000-02; Program Chair of IWDC-2002, WoWMoM 1998-99; TPC Vice Chair of ICPADS-2002; and as TPC member of numerous IEEE and ACM conferences. He is the Vice Chair of IEEE TCPP and TCCC. Prior to 1999, Dr. Das was a professor of computer science at Univeristy of North Texas where he twice (1991 and 1997) received the Student Association's Honor Professor Award for best teaching and scholarly research. He received B.Tech. degree in 1983 from Calcutta University, M.S. degree in 1984 from Indian Institute of Science, Bangalore, and PhD degree in 1988 from the University of Central Florida, Orlando, all in Computer Science.  相似文献   
63.
Although multi-domain survivability is a major concern for operators, few studies have considered the design of post-fault restoration schemes. This paper proposes two such strategies, based upon hierarchical routing and signaling crankback, to handle single and multi-link failure events in multi-domain IP/MPLS networks (also extendible to optical DWDM networks). Specifically, the hierarchical routing strategy relies upon abstracted domain information to compute inter-domain loose routes, whereas the crankback scheme applies signaling re-tries to restore paths in a domain-by-domain manner. The performance of these proposed solutions is then analyzed and compared via simulation.  相似文献   
64.
65.
Vikram  Raj  Sinha  Ditipriya  De  Debashis  Das  Ayan Kumar 《Wireless Networks》2020,26(7):5177-5205
Wireless Networks - Early prediction of a forest fire is one of the critical research challenges of the wireless sensor network (WSN) to save our ecosystem. In WSN based forest fire detection...  相似文献   
66.
A method of scanning a one-dimensional shaped pattern generated by a circular aperture is presented. It is shown that the desired beam shape can be retained in the desired scan plane by superposing on the nonlinear phase distribution applied along and parallel to the meridian plane, a linear phase progression along the perpendicular direction. Analysis carried out using the stationary phase method of evaluating the integral reveals that the gradient of the linear phase progression is a function of position along the meridian plane of the aperture. Expressions for the phase functions are derived. Computed results on the phase distribution and the radiation pattern are presented.  相似文献   
67.
Journal of Signal Processing Systems - Research interest and industry investment in edge computing solutions have increased dramatically in recent years. Consequent quest for balanced performance,...  相似文献   
68.
This paper investigates the resource allocation in a massively deployed user cognitive radio enabled non-orthogonal multiple access (CR-NOMA) network considering the downlink scenario. The system performance deteriorates with the number of users who are experiencing similar channel characteristics from the base station (BS) in NOMA. To address this challenge, we propose a framework for maximizing the system throughput that is based on one-to-one matching game theory integrated with the machine learning technique. The proposed approach is decomposed to solve users clustering and power allocation subproblems. The selection of optimal cluster heads (CHs) and their associated cluster members is based on Gale-Shapley matching game theoretical model with the application of Hungarian method. The CHs can harvest energy from the BS and transfer their surplus power to the primary user (PU) through wireless power transfer. In return, they are allowed to access the licensed band for secondary transmission. The power allocation to the users intended for power conservation at CHs is formulated as a probabilistic constraint, which is then solved by employing the support vector machine (SVM) algorithm. The simulation results demonstrate the efficacy of our proposed schemes that enable the CHs to transfer the residual power while ensuring maximum system throughput. The effects of different parameters on the performance are also studied.  相似文献   
69.
This research illustrates a precise linear and elliptical antenna array design for synthesising the optimal far-field radiation pattern in the fifth-generation (5G) communication spectrum using a meta-heuristic optimisation technique known as black widow optimisation (BWO). 5G communication is an emerging technology with revolutionary changes in the wireless communication system with ultra-high data rate, enhanced capacity, low latency and good quality of service. An accurate antenna array design for an ideal far-field radiation pattern synthesis with a suppressed side lobe level (SLL) value and half power beam width (HPBW) is the most crucial aspect of 5G communications. A suppressed SLL is necessary to reduce interference in the entire side lobe region, whereas a low HPBW is required for long-distance communication. Here, the BWO is employed to find the optimal feeding current to each array element to lower the SLL and the HPBW value. The BWO algorithm sustains impeccable equity between the exploration and exploitation stages to impact different potential regions of the search space and generate new solutions to attain the global optima by evading the trap of local optima. The design examples of the linear antenna array (LAA) and elliptical antenna array (EAA) are illustrated in this article by applying the optimal feeding currents to each array element. Compared to the uniform antenna array and methodologies described in the recently published literature, the results obtained utilising the BWO algorithm for designing the LAAs and EAAs demonstrate a substantial development in the reduction of SLL and HPBW.  相似文献   
70.
SIP-based vertical handoff between WWANs and WLANs   总被引:3,自引:0,他引:3  
Future-generation wireless networks have been envisioned as the integration of various wireless access networks, including both wireless wide area networks and wireless local area networks. In such a heterogeneous network environment, seamless mobility support is the basis of providing uninterrupted wireless services to mobile users roaming between various wireless access networks. Because of transparency to lower-layer characteristics, ease of deployment, and greater scalability, the application-layer-based session initiation protocol has been considered the right candidate for handling mobility in heterogeneous wireless networks. However, SIP entails application-layer transport and processing of messages, which may introduce considerable delay. As a case study of the performance of mobility management protocols in the heterogeneous wireless networks, we analyze the delay associated with vertical handoff using SIP in the WLAN-UMTS internetwork. Analytical results show that WLAN-to-UMTS handoff incurs unacceptable delay for supporting real-time multimedia services, and is mainly due to transmission of SIP signaling messages over erroneous and bandwidth-limited wireless links. On the other hand, UMTS-to-WLAN handoff experiences much less delay, mainly contributed by the processing delay of signaling messages at the WLAN gateways and servers. While the former case requires the deployment of soft handoff techniques to reduce the delay, faster servers and more efficient host configuration mechanisms can do the job in the latter case.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号