首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   504篇
  免费   21篇
  国内免费   2篇
电工技术   21篇
化学工业   110篇
金属工艺   17篇
机械仪表   10篇
建筑科学   6篇
矿业工程   2篇
能源动力   43篇
轻工业   29篇
水利工程   2篇
石油天然气   5篇
无线电   49篇
一般工业技术   99篇
冶金工业   63篇
原子能技术   2篇
自动化技术   69篇
  2023年   5篇
  2022年   15篇
  2021年   20篇
  2020年   23篇
  2019年   28篇
  2018年   37篇
  2017年   27篇
  2016年   34篇
  2015年   11篇
  2014年   29篇
  2013年   51篇
  2012年   35篇
  2011年   43篇
  2010年   24篇
  2009年   19篇
  2008年   16篇
  2007年   10篇
  2006年   11篇
  2005年   13篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   14篇
  1996年   5篇
  1995年   13篇
  1994年   6篇
  1993年   6篇
  1992年   3篇
  1990年   2篇
  1989年   1篇
  1986年   2篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有527条查询结果,搜索用时 15 毫秒
21.
Microneedles are small needle‐like structures that are almost invisible to the naked eye. They have an immense potential to serve as a valuable tool in many medical applications, such as painless vaccination. Microneedles work by breaking through the stratum corneum, the outermost barrier layer of the skin, and providing a direct path for drug delivery into the skin. A lot of research has been presented over the past two decades on the applications of microneedles, yet the fundamental mechanism of how they interact, pressure, and penetrate the skin in its native state is worth examining further. As such, a major difficulty with understanding the mechanism of microneedle–skin interaction is the lack of an artificial mechanical human skin model to use as a standardized substrate. In this research news, the development of an artificial mechanical skin model based on a thorough mechanical study of fresh human and porcine skin samples is presented. The artificial mechanical skin model can be used to study the mechanical interactions between microneedles and skin, but not diffusion of molecules across skin. This model can assist in improving the performance of microneedles by enhancing the reproducibility of microneedle depth insertions for optimal drug delivery and biosensing.

  相似文献   

22.
Antimicrobial photodynamic therapy (aPDT) is increasingly being explored for treatment of periodontitis. Here, we investigated the effect of aPDT on human dental plaque bacteria in suspensions and biofilms in vitro using methylene blue (MB)-loaded poly(lactic-co-glycolic) (PLGA) nanoparticles (MB-NP) and red light at 660 nm. The effect of MB-NP-based aPDT was also evaluated in a clinical pilot study with 10 adult human subjects with chronic periodontitis. Dental plaque samples from human subjects were exposed to aPDT—in planktonic and biofilm phases—with MB or MB-NP (25 µg/mL) at 20 J/cm2 in vitro. Patients were treated either with ultrasonic scaling and scaling and root planing (US + SRP) or ultrasonic scaling + SRP + aPDT with MB-NP (25 µg/mL and 20 J/cm2) in a split-mouth design. In biofilms, MB-NP eliminated approximately 25% more bacteria than free MB. The clinical study demonstrated the safety of aPDT. Both groups showed similar improvements of clinical parameters one month following treatments. However, at three months ultrasonic SRP + aPDT showed a greater effect (28.82%) on gingival bleeding index (GBI) compared to ultrasonic SRP. The utilization of PLGA nanoparticles encapsulated with MB may be a promising adjunct in antimicrobial periodontal treatment.  相似文献   
23.
Feldspar/titanium dioxide/chitosan hybrid, a photoactive biocompatible adsorbent for anionic dyes, was synthesized, characterized, and successfully tested. The adsorbent characterization, pH role, adsorbent dose effect, equilibrium data, kinetic plats, and thermodynamic parameters are reported. The point of zero charge for the hybrid was measured to be 8.3, and the most favorable pH range for the adsorption process was found to be below this pH value. The adsorption equilibrium study demonstrated that the Freundlich model was best fitted to the experimental data. Without UV light exposure, the prepared adsorbent adsorbed 72 mg of Acid Black 1 (AB1)/g of sorbent (86% removal) from a 100‐mL solution with an initial dye concentration of 50 mg/L, whereas UV irradiation resulted in an increase in the elimination of AB1 dye (97% removal). The kinetic data was depicted well by the pseudo‐second‐order model. The thermodynamic parameters indicated that the reaction between the hybrid and the dye was exothermic and also spontaneous at lower temperatures. In the batch desorption process, several aqueous solutions adjusted to different pH values were tested, and the best desorption performance (90% desorption) was achieved at pH 11. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40247.  相似文献   
24.
Metallurgical and Materials Transactions B - Production of ferronickel alloy by thermal treatment of nickeliferous pyrrhotite (Pyrr) tailings was studied by both thermodynamic assessment and...  相似文献   
25.
In this work, using electrochemical techniques the authors investigated the protective properties of a polypyrrole/polyaniline bilayer as a conductive polymer. A polypyrrole/polyaniline bilayer was deposited on carbon steel substrate by potentiostatic method. The electric capacitance and resistance of the films were monitored with the immersion time in a corrosive solution to investigate the water permeability of the films. Polypyrrole/polyaniline bilayer has a relatively low permeability and good catalytic behavior in passivation of carbon steel in longer periods. The results show that the bilayer has a better anticorrosive behavior compared to homopolymers (polypyrrole and polyaniline).  相似文献   
26.
27.
Various zinc oxide nanostructures were synthesized using thermal decomposition of zinc acetate dihydrate in a single process. The characterization of samples using powder X-ray diffraction, scanning electron microscope and FT-IR measurements revealed that the pure phase of different morphologies such as nanoparticles, nanowires and nanodisks had been synthesized successfully. Surprisingly some synthesized ZnO nanostructures were dark gray. The results showed that the reason may have been related to the oxygen deficiency and strong asymmetric stretching mode of wurtzite ZnO nanostructure. Using such samples, the photodegradation of Methylene blue was performed by UV–vis absorption measurement and the effect of morphology on the photocatalytic properties of different ZnO nanostructures was examined. The results showed that the nanodisks had the best photocatalytic performance among the other morphologies. The reason was attributed to the presence of specific crystal planes such as (0001) facets in nanodisks which can improve their photocatalytic performance.  相似文献   
28.
Friction stir processing of AZ31 Mg alloy was investigated by numerical modeling and experiments. A CFD based, fully coupled, 3D, thermo-mechanical model was built to better understand the effect of process parameters on temperature, material flow and strain rate. In order to account for material softening phenomena at elevated temperatures and extremely high strain rates that occur during the FSP process, experimentally measured peak temperatures were utilized to introduce a correction function in the flow stress constitutive relation. The numerical results showed that rotational speed as compared to translational speed had a more dominant effect on temperature field and strain rate. In addition, the asymmetric material flow around the tool axis caused higher peak temperature and strain rate on the advancing side (AS), while the material in the path of tool pin was swept around the retreating side (RS). FSP experiments confirmed peak temperatures measured at sheet surface near shoulder perimeter on AS were always higher than corresponding RS peak temperatures, under the selected range of process parameters. In addition to thermo-mechanical aspects, the metallurgical characteristics of FSP i.e. mainly the grain size evolution was studied by optical and electron microscopy. Experiments revealed that the coarse bimodal microstructure of as-received AZ31 Mg was subdivided into a defect-free, fine grain microstructure at the rotational speed of 1000 rpm, while a defect-free but a relatively coarse and bimodal microstructure evolved in the material at rotational speeds higher than 1000 rpm. Furthermore, in the selected range of process parameters the increases in translational speed resulted in finer grain sizes without the formation of voids or defects.  相似文献   
29.
30.
The purification of metallurgical grade silicon (MG-Si) using a combination of solvent refining and physical separation is studied. MG-Si was alloyed with iron and solidified under different cooling rates in order to grow pure Si dendrites from the alloy. The Si dendrites were then separated using a gravity-based method. The separation method relies on the significantly different densities of Si and FeSi2, and it uses a heavy liquid with specific gravity between the two phases to float the light Si particles to the surface of the liquid, while the heavy iron silicide sinks. The effects of the particle size and cooling rate on the yield and separation efficiency of the Si phase were investigated by quantifying the fraction of Si in the sinks and floats. The results demonstrate that the crushing size of the particles prior to separation should be approximately the same as the width of the dendrites in order to maximize the separation efficiency while simultaneously lowering the grinding cost.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号