首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
综合类   1篇
化学工业   4篇
金属工艺   1篇
机械仪表   3篇
建筑科学   1篇
能源动力   1篇
轻工业   3篇
无线电   4篇
一般工业技术   6篇
自动化技术   3篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2013年   3篇
  2012年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
21.

In the present paper, the magnetohydrodynamics effects on flow parameters of blood carrying magnetic nanoparticles flowing through a stenosed artery under the influence of periodic body acceleration are investigated. Blood is assumed to behave as a Casson fluid. The governing equations are nonlinear and solved numerically using finite difference schemes. The effects of stenotic height, yield stress, magnetic field, particle concentration and mass parameters on wall shear stress, flow resistance and velocity distribution are analysed. It is found that wall shear stress and flow resistance values are considerably enhanced when an external magnetic field is applied. The velocity values of fluid and particles are appreciably reduced when a magnetic field is applied on the model. It is significant to note that the presence of nanoparticles, magnetic field and yield stress tend to increase the plug core radius. Increased wall shear stress and flow resistance affects the circulation of blood in the human cardiovascular system. The results obtained from the study can be used in normalizing the values of the model parameters and hence can be used for medical applications. The presence of magnetic field helps to slow down the flow of fluid and magnetic particles associated with it. The magnetic particles of nanosize developed in recent days are biodegradable and used in biomedical applications. Biomagnetic principles and biomagnetic particles as drug carriers are used in cancer treatments.

  相似文献   
22.
Smart metering has gained considerable attention as a research focus due to its reliability and energy-efficient nature compared to traditional electromechanical metering systems. Existing methods primarily focus on data management,rather than emphasizing efficiency. Accurate prediction of electricity consumption is crucial for enabling intelligent grid operations,including resource planning and demandsupply balancing. Smart metering solutions offer users the benefits of effectively interpreting...  相似文献   
23.

Nowadays sharing secure data turns out to be a challenging task for the data owner due to its privacy and confidentiality. Several IT companies stores their important information in the cloud since computing has developed immense power in sharing the data. On the other hand, privacy is considered a serious issue in cloud computing as there are numerous privacy concerns namely integrity, authentication as well as confidentiality. Among all those concerns, this paper focuses on enhancing the data integrity in the public cloud environment using Qusai modified levy flight distribution for the RSA cryptosystem (QMLFD-RSA). An effective approach named QMLFD for the RSA cryptosystem is proposed for resolving the problem based on data integrity in public cloud environment. A secured key generation and data encryption are done by employing the RSA cryptosystem thus the data is secured from unauthorized users. The key selection is done by using quasi based modified Levy flight distribution algorithm. Thus the proposed approach provides an effective model to enhance the integrity of data in cloud computing thus checking the data integrity uploaded in the public cloud storage system. In addition to this, ten optimization benchmark functions are calculated to determine the performances and the functioning of the newly developed QMLFD algorithm. The simulation results and comparative performances are carried out and the analysis reveals that the proposed QMLFD for the RSA cryptosystem provides better results when compared with other approaches.

  相似文献   
24.
In the present work we report a facile and eco-friendly route to synthesize magnesium oxide (MgO) nanoflakes by thermal decomposition of precursors, which are prepared by a reflux condensation approach using different solvents namely ethylenediamine (EDA), hexamethylediamine (HTMA) and triethanolamine (TEA). X-ray diffraction (XRD) pattern reveales the polycrystalline nature of MgO with cubic structure. Fourier transform infrared spectroscopy (FTIR) studies confirmed the formation of MgO with the characteristic vibrational mode of Mg–O. Scanning electron microscopy (SEM) images revealed the formation of MgO nanoflakes. Optical band gap energy of MgO nanocrystals calculated from UV diffused reflectance spectroscopy (DRS) varied from 5.42 to 5.56 eV. Photoluminescence (PL) spectra exhibited visible emissions due to the formation of defects in the band gap region of MgO. The photocatalytic degradation of methyl orange (MO) dye by MgO nanoflakes synthesized using different solvents was investigated under UV light irradiation and the results demonstrate that MgO nanoflakes possess appreciable photocatalytic activity for decomposing MO dye, when EDA is used as a capping agent.  相似文献   
25.
In this study, the ketoconazole‐conjugated zinc oxide (ZnO) nanoparticles were prepared in a single‐step approach using dextrose as an intermediate compound. The physical parameters confirmed the drug conjugation with ZnO and their size was around 70–75 nm. The drug loading and in vivo drug release studies indicated that the –CHO group from the dextrose increase the drug loading up to 65% and their release kinetics were also studied. The anti‐fungal studies indicated that the prepared nanoparticles exhibit strong anti‐fungal activity and the minimum concentration needed is 10 mg/ml. The nanoparticles loaded semi‐solid gel was prepared using carbopol, methylparaben, propyl paraben and propylene glycol. The in vitro penetration of the ketoconazole‐conjugated nanoparticles was studied using the skin. The results indicated that the semi‐solid gel preparations influenced the penetration and also favoured the accumulation into the skin membrane. The veterinary clinical studies indicated that the prepared gel is highly suitable for treatment of Malassezia.Inspec keywords: II‐VI semiconductors, skin, biomedical materials, antibacterial activity, wide band gap semiconductors, drug delivery systems, nanomedicine, drugs, diseases, gels, nanofabrication, nanoparticles, zinc compounds, biomembranes, veterinary medicineOther keywords: strong anti‐fungal activity, propyl paraben, propylene glycol, semisolid gel preparations, skin membrane, veterinary clinical studies, semisolid formulation, skin disease, ketoconazole‐conjugated zinc oxide nanoparticles, single‐step approach, physical parameters, drug conjugation, drug loading, release kinetics, dextrose, in vivo drug release studies, carbopol, methylparaben, in vitro penetration, Malassezia, ZnO  相似文献   
26.
Friction Stir Processing (FSP) has emerged as a distinctive and pioneering solid state technique to produce surface composites. The objective of the present research is to produce reinforced 90/10 Copper–Nickel surface composites with different carbide-based ceramic particles through FSP and study the relationship of its dynamic parameters including tool rotational speed, tool traverse speed, and width of the groove over the surface behavior. Responses such as sliding wear, microhardness, and surface modified area in the friction stir processed region are modeled using polynomial, nonlinear, multiple regression based on the central composite design of experiment. Analysis of the developed models showed that the FSP parameters; traverse speed, rotational speed, and groove width have significant influence on both the sliding wear and microhardness of developed surface composite. And furthermore, tool rotational speed and tool traverse speed, simultaneously control dispersion of reinforcement in the surface. To validate the abovementioned noteworthy results and to study the microstructural aspects, selected specimens were carried over metallurgical analysis and the obtained results were put forward in detail in this paper.  相似文献   
27.
In the current study, friction stir processing was applied as a methodology to produce surface composites of AZ91D magnesium alloy with ZrO2 particles. Microstructural evolution, microhardness profile and corrosion behaviour of the developed surface composite were analysed. The results indicate that the combined effect of friction stir processing and reinforcement of ZrO2 reduced the grain size, and fragmented and dispersed the secondary phases. The fine dispersion of ZrO2 particles contributed to the enhancement of cumulative surface potential, and hence the corrosion resistance of the developed surface composite. The analysis of post-corrosion test specimens revealed the formation of corrosion products that had similar composition to that of hydroxyapatite. The formation of such corrosion products is beneficial, as it contributes to corrosion resistance (stable and adherent layer) and biocompatibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号