首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1204篇
  免费   100篇
  国内免费   4篇
电工技术   16篇
综合类   2篇
化学工业   358篇
金属工艺   21篇
机械仪表   25篇
建筑科学   30篇
能源动力   55篇
轻工业   175篇
水利工程   5篇
石油天然气   1篇
无线电   108篇
一般工业技术   222篇
冶金工业   36篇
原子能技术   4篇
自动化技术   250篇
  2024年   2篇
  2023年   32篇
  2022年   90篇
  2021年   114篇
  2020年   46篇
  2019年   43篇
  2018年   71篇
  2017年   59篇
  2016年   69篇
  2015年   57篇
  2014年   54篇
  2013年   105篇
  2012年   91篇
  2011年   101篇
  2010年   66篇
  2009年   67篇
  2008年   54篇
  2007年   45篇
  2006年   33篇
  2005年   20篇
  2004年   22篇
  2003年   16篇
  2002年   4篇
  2001年   4篇
  2000年   7篇
  1999年   2篇
  1998年   5篇
  1997年   9篇
  1996年   8篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1977年   2篇
  1976年   3篇
排序方式: 共有1308条查询结果,搜索用时 15 毫秒
991.
The viscoelastic nonlinear behavior of several base and polymer modified asphalts (PMA) has been studied in step‐strain experiments. The polymers were poly(styrene‐b‐butadiene‐b‐styrene), poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene), poly(ethylene‐r‐vinylacetate) copolymers, and a linear low density poly(ethylene), which were chosen as representatives of the main categories of asphalt modifiers. Because of the complexity of the morphological structure of these materials, the relaxation modulus has only partial and qualitative similarities with that of melt or high concentrated solutions of entangled polymeric liquids. No time strain separability can be applied, and the relaxation experiments are conveniently described by means of the memory functions. These have been calculated both via a parametric fitting procedure and by interpolation algorithms. Results are presented, and a correlation between the PMA structure and the corresponding memory function is proposed for the investigated materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2330–2340, 2007  相似文献   
992.
The Negative Bias Temperature Instability (NBTI) phenomenon is agreed to be one of the main reliability concerns in nanoscale circuits. It increases the threshold voltage of pMOS transistors, thus, slows down signal propagation along logic paths between flip-flops. NBTI may cause intermittent faults and, ultimately, the circuit’s permanent functional failures. In this paper, we propose an innovative NBTI mitigation approach by rejuvenating the nanoscale logic along NBTI-critical paths. The method is based on hierarchical identification of NBTI-critical paths and the generation of rejuvenation stimuli using an Evolutionary Algorithm. A new, fast, yet accurate model for computation of NBTI-induced delays at gate-level is developed. This model is based on intensive SPICE simulations of individual gates. The generated rejuvenation stimuli are used to drive those pMOS transistors to the recovery phase, which are the most critical for the NBTI-induced path delay. It is intended to apply the rejuvenation procedure to the circuit, as an execution overhead, periodically. Experimental results performed on a set of designs demonstrate reduction of NBTI-induced delays by up to two times with an execution overhead of 0.1 % or less. The proposed approach is aimed at extending the reliable lifetime of nanoelectronics.  相似文献   
993.
The Pt-Sn bimetallic system is a much studied and commercially used catalyst for propane dehydrogenation. The traditionally prepared catalyst, however, suffers from inhomogeneity and phase separation of the active Pt–Sn phase. Colloidal chemistry offers a route for the synthesis of Pt–Sn bimetallic nanoparticles (NPs) in a systematic, well-defined, tailored fashion over conventional methods. Here, the successful synthesis of well-defined ≈2 nm Pt, PtSn, and Pt3Sn nanocrystals with distinct crystallographic phases is reported; hexagonal close packing (hcp) PtSn and fcc Pt3Sn show different activity and stability depending on the hydrogen-rich or poor environment in the feed. Moreover, face centred cubic (fcc) Pt3Sn/Al2O3, which exhibited the highest stability compared to hcp PtSn, shows a unique phase transformation from an fcc phase to an L12-ordered superlattice. Contrary to PtSn, H2 cofeeding has no effect on the Pt3Sn deactivation rate. The results reveal structural dependency of the probe reaction, propane dehydrogenation, and provide a fundamental understanding of the structure−performance relationship on emerging bimetallic systems.  相似文献   
994.
The problem of multi-objective optimization (MOP) is approached from the theoretical background of the Game Theory, which consists in finding a compromise between two rational players of a bargaining problem. In particular, the Kalai and Smorodinsky (K-S) model offers a balanced and attractive solution resulting from cooperative players. This approach allows avoiding the computationally expensive and uncertain reconstruction of the full Pareto Frontier usually required by MOPs. The search for the K-S solution can be implemented into methodologies with useful applications in engineering MOPs where two or more functions must be minimized. This paper presents an optimization algorithm aimed at rapidly finding the K-S solution where the MOP is transformed into a succession of single objective problems (SOP). Each SOP is solved by meta-model assisted evolution strategies used in interaction with an FEM simulation software for metal forming applications. The proposed method is first tested and demonstrated with known mathematical multi-objective problems, showing its ability to find a solution lying on the Pareto Frontier, even with a largely incomplete knowledge of it. The algorithm is then applied to the FEM optimization problem of wire drawing process with one and two passes, in order to simultaneously minimize the pulling force and the material damage. The K-S solutions are compared to results previously suggested in literature using more conventional methodologies and engineering expertise. The paper shows that K-S solutions are very promising for finding quite satisfactory engineering compromises, in a very efficient manner, in metal forming applications.  相似文献   
995.
The investigation of the crossing of exogenous substances through the blood‐brain barrier (BBB) is object of intensive research in biomedicine, and one of the main obstacles for reliable in vitro evaluations is represented by the difficulties at the base of developing realistic models of the barrier, which could resemble as most accurately as possible the in vivo environment. Here, for the first time, a 1:1 scale, biomimetic, and biohybrid BBB model is proposed. Microtubes inspired to the brain capillaries were fabricated through two‐photon lithography and used as scaffolds for the co‐culturing of endothelial‐like bEnd.3 and U87 glioblastoma cells. The constructs show the maturation of tight junctions, good performances in terms of hindering dextran diffusion through the barrier, and a satisfactory trans‐endothelial electrical resistance. Moreover, a mathematical model is developed, which assists in both the design of the 3D microfluidic chip and its characterization. Overall, these results show the effective formation of a bioinspired cellular barrier based on microtubes reproducing brain microcapillaries to scale. This system will be exploited as a realistic in vitro model for the investigation of BBB crossing of nanomaterials and drugs, envisaging therapeutic and diagnostic applications for several brain pathologies, including brain cancer.  相似文献   
996.
Nonlinear structural optimization is fairly expensive and difficult, because a large number of nonlinear analyses is required due to the large number of design variables involved in topology optimization. In element density based topology optimization, the low density elements create mesh distortion and the updating of finite element material with low density elements has a severe effect on the optimization results in the next cycles. In order to overcome these difficulties, the equivalent static loads method for nonlinear response structural optimization (ESLSO) primarily used for size and shape optimization has been applied to topology optimization. The nonlinear analysis is performed with the given loading conditions to calculate equivalent static loads (ESLs) and these ESLs are used to perform linear response optimization. In this paper, the authors have presented the results of five case studies with material, geometric and contact nonlinearities showing good agreement and providing justification of the proposed method.  相似文献   
997.
Dry coating techniques enable manufacturing of coated solid dosage forms with no, or very limited, use of solvents. As a result, major drawbacks associated with both organic solvents and aqueous coating systems can be overcome, such as toxicological, environmental, and safety-related issues on the one hand as well as costly drying phases and impaired product stability on the other. The considerable advantages related to solventless coating has been prompting a strong research interest in this field of pharmaceutics. In the article, processes and applications relevant to techniques intended for dry coating are analyzed and reviewed. Based on the physical state of the coat-forming agents, liquid- and solid-based techniques are distinguished. The former include hot-melt coating and coating by photocuring, while the latter encompass press coating and powder coating. Moreover, solventless techniques, such as injection molding and three-dimensional printing by fused deposition modeling, which are not purposely conceived for coating, are also discussed in that they would open new perspectives in the manufacturing of coated-like dosage forms.  相似文献   
998.
A strategy is reported for the controlled assembly of organic‐inorganic heterostructures consisting of individual single‐walled carbon nanotubes (SWCNTs) selectively coupled to single semiconductor quantum dots (QDs). The assembly in aqueous solution was controlled towards the formation of monofunctionalized SWCNT‐QD structures. Photoluminescence studies in solution, and on surfaces at the single nanohybrid level, showed evidence of electronic coupling between the two nanostructures. The ability to covalently couple heterostructures with single particle control is crucial for the design of novel QD‐based optoelectronic and light‐energy conversion devices.  相似文献   
999.
Auxetic open cell polyurethane (PU) foams have been manufactured and mechanically characterised under cyclic tensile loading. The classical manufacturing process for auxetic PU foams involves multiaxial compression of the conventional parent foam, and heating of the compressed specimens above the Tm of the foam polymer. Eighty cylindrical specimens were fabricated using manufacturing routes modified from those in the open literature, with different temperatures (135 °C, 150 °C), compression ratios and different cooling methods (water or room temperature exposure). Compressive tensile cyclic loading has been applied to measure tangent modulus, Poisson’s ratios and energy dissipated per unit volume. The results are used to obtain relations between manufacturing parameters, mechanical and hysteresis properties of the foams. Compression, both radial and axial, was found to be the most significant manufacturing parameter for the auxetic foams in this work.  相似文献   
1000.
By controlling the timing and duration of hydrogen exposure in a fixed thermal process, we tuned the diameters of carbon nanotubes (CNTs) within a vertically aligned film by a factor of 2, and tuned the areal densities by an order of magnitude. The CNT structure is correlated with the catalyst morphology, suggesting that while chemical reduction of the catalyst layer is required for growth, prolonged H2 exposure not only reduces the iron oxide and enables agglomeration of the Fe film, but also leads to catalyst coarsening. Control of this coarsening process allows tuning of CNT characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号