首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   553篇
  免费   33篇
  国内免费   1篇
电工技术   20篇
综合类   3篇
化学工业   155篇
金属工艺   10篇
机械仪表   6篇
建筑科学   32篇
矿业工程   1篇
能源动力   33篇
轻工业   27篇
水利工程   1篇
无线电   109篇
一般工业技术   108篇
冶金工业   11篇
原子能技术   1篇
自动化技术   70篇
  2024年   7篇
  2023年   35篇
  2022年   34篇
  2021年   55篇
  2020年   33篇
  2019年   38篇
  2018年   19篇
  2017年   17篇
  2016年   27篇
  2015年   14篇
  2014年   15篇
  2013年   24篇
  2012年   24篇
  2011年   30篇
  2010年   18篇
  2009年   24篇
  2008年   14篇
  2007年   15篇
  2006年   11篇
  2005年   15篇
  2004年   8篇
  2003年   13篇
  2002年   11篇
  2001年   10篇
  2000年   9篇
  1999年   4篇
  1998年   2篇
  1997年   8篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1981年   2篇
  1980年   6篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1969年   1篇
  1966年   1篇
  1959年   1篇
  1936年   1篇
  1928年   1篇
  1926年   3篇
排序方式: 共有587条查询结果,搜索用时 15 毫秒
91.
Junge's variability-lifetime relationship describes the relation between the tropospheric residence time of a volatile trace gas and the coefficient of variation of the tropospheric mixing ratio at a remote location. However, no unique or universal quantification of this relationship exists. It can only be derived on a case-by-case basis for consistent data sets on substances with similar source and sink patterns. Using a multi-media model of the long-range transport of organic compounds, we determine variability-lifetime relationships for volatile substances. Next, we demonstrate how the variability-lifetime relationship can be obtained for semi-volatile organic compounds (SOCs) with the model and we investigate typical deviations from the Junge relationship for volatile compounds that are caused by the multi-media partitioning of SOCs. One cause of deviation from this relationship is substances undergoing significant transport in water so that their distribution in air is noticeably influenced by their distribution in water. The other, wider, deviation is caused by substances with a strong tendency for deposition and re-volatilization. Finally, we address the comparison of the model results with field data. Preliminary analyses of long-term monitoring data for polychlorinated biphenyls at remote sites have shown that the identification of Junge relationships in field data is not straightforward. We discuss possible strategies for the derivation of Junge relationships from field data on SOCs.  相似文献   
92.
93.
Interrogation and control of cellular fate and function using optogenetics is providing revolutionary insights into biology. Optogenetic control of cells is achieved by coupling genetically encoded photoreceptors to cellular effectors and enables unprecedented spatiotemporal control of signaling processes. Here, a fast and reversibly switchable photoreceptor is used to tune the mechanical properties of polymer materials in a fully reversible, wavelength‐specific, and dose‐ and space‐controlled manner. By integrating engineered cyanobacterial phytochrome 1 into a poly(ethylene glycol) matrix, hydrogel materials responsive to light in the cell‐compatible red/far‐red spectrum are synthesized. These materials are applied to study in human mesenchymal stem cells how different mechanosignaling pathways respond to changing mechanical environments and to control the migration of primary immune cells in 3D. This optogenetics‐inspired matrix allows fundamental questions of how cells react to dynamic mechanical environments to be addressed. Further, remote control of such matrices can create new opportunities for tissue engineering or provide a basis for optically stimulated drug depots.  相似文献   
94.
95.
The main benefit, the economical manufacturability of traditional gear profiles, such as an involute, are no longer of major importance in times of computer-aided design and production. Due to existing modern production techniques standard and more sophisticated gear types can be produced with high precision and maintainable financial effort. Especially for non-standard gear types modern gear production systems ensure high quality and reliability to the operator with regard to flank and meshing geometry. Depending on the context of application different gear types have advantages and disadvantages concerning load carrying capacity, effectiveness or noise excitation. Developing an optimized gearing for the desired application is thus a complex and elementary goal within the design process.  相似文献   
96.
Avoiding faradaic side reactions during the operation of electrochemical devices is important to enhance the device stability, to achieve low power consumption, and to prevent the formation of reactive side-products. This is particularly important for bioelectronic devices, which are designed to operate in biological systems. While redox-active materials based on conducting and semiconducting polymers represent an exciting class of materials for bioelectronic devices, they are susceptible to electrochemical side-reactions with molecular oxygen during device operation. Here, electrochemical side reactions with molecular oxygen are shown to occur during organic electrochemical transistor (OECT) operation using high-performance, state-of-the-art OECT materials. Depending on the choice of the active material, such reactions yield hydrogen peroxide (H2O2), a reactive side-product, which may be harmful to the local biological environment and may also accelerate device degradation. A design strategy is reported for the development of redox-active organic semiconductors based on donor–acceptor copolymers that prevents the formation of H2O2 during device operation. This study elucidates the previously overlooked side-reactions between redox-active conjugated polymers and molecular oxygen in electrochemical devices for bioelectronics, which is critical for the operation of electrolyte-gated devices in application-relevant environments.  相似文献   
97.
Periodic mesoporous organosilicas (PMOs) represent a new class of organic-inorganic hybrid materials suitable for a broad range of applications such as chromatography, catalysis, sensing and microelectronics. Unlike in organic functionalized mesoporous silica phases obtained via grafting or co-condensation procedures the organic groups in PMOs are direct parts of the 3D framework structure, thus giving raise to enormous possibilities to tune their chemical and physical properties in designated ways by varying the structure of the precursors. In this review the distinctive features of PMOs are discussed, the latest developments concerning compositions, structures, morphologies and potential applications are figured out and finally a brief outlook of future aspects is given.  相似文献   
98.
A series of glycolated polythiophenes for use in organic electrochemical transistors (OECTs) is designed and synthesized, differing in the distribution of their ethylene glycol chains that are tethered to the conjugated backbone. While side chain redistribution does not have a significant impact on the optoelectronic properties of the polymers, this molecular engineering strategy strongly impacts the water uptake achieved in the polymers. By careful optimization of the water uptake in the polymer films, OECTs with unprecedented steady-state performances in terms of [μC*] and current retentions up to 98% over 700 electrochemical switching cycles are developed.  相似文献   
99.
A novel bioorthogonal method for the modification of cells with single‐stranded DNA oligomers is compared to five alternative methods with respect to labeling efficacy, specificity, and effects on cell viability. The new method is based on oxime ligation of aminooxybiotin to aldehyde groups installed by periodate cleavage of cell‐surface glycans, followed by the coupling of preformed DNA–streptavidin conjugates. As compared with two literature‐reported methods based on direct coupling of N‐hydroxysuccinimidyl (NHS)–DNA or NHS–biotinylation as well as with techniques based on strain‐promoted alkyne‐azide cycloaddition, this method shows the highest labeling densities and is sufficiently mild to avoid cell damage. Functionality of the DNA tags is demonstrated by DNA‐directed immobilization on solid substrates and assembly of small cell aggregates.  相似文献   
100.
The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differentiation is triggered by a series of signaling processes, including integrin and bone morphogenetic protein (BMP), which act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in artificial poly-(l)-lactide acid (PLLA) based nanofiber scaffolds in vivo. Electrospun matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were implanted in calvarial critical size defects in rats. Cranial CT-scans were taken 4, 8 and 12 weeks after implantation. Specimens obtained after euthanasia were processed for histology and immunostainings on osteocalcin, BMP-2 and Smad5. After implantation the scaffolds were inhomogeneously colonized and cells were only present in wrinkle- or channel-like structures. Ossification was detected only in focal areas of the scaffold. This was independent of whether BMP-2 was incorporated in the scaffold. However, cells that migrated into the scaffold showed an increased ratio of osteocalcin and Smad5 positive cells compared to empty defects. Furthermore, in case of BMP-2 incorporated PLLA-collagen type I scaffolds, 4 weeks after implantation approximately 40?% of the cells stained positive for BMP-2 indicating an autocrine process of the ingrown cells. These findings indicate that a cooperative effect between BMP-2 and collagen type I can be transferred to PLLA nanofibers and furthermore, that this effect is active in vivo. However, this had no effect on bone formation. The reason for this seems to be an unbalanced colonization of the scaffolds with cells, due to insufficient pore size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号