首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2624篇
  免费   165篇
  国内免费   24篇
电工技术   44篇
综合类   9篇
化学工业   754篇
金属工艺   75篇
机械仪表   113篇
建筑科学   108篇
矿业工程   10篇
能源动力   160篇
轻工业   168篇
水利工程   49篇
石油天然气   22篇
无线电   247篇
一般工业技术   435篇
冶金工业   86篇
原子能技术   17篇
自动化技术   516篇
  2024年   4篇
  2023年   46篇
  2022年   78篇
  2021年   182篇
  2020年   128篇
  2019年   175篇
  2018年   212篇
  2017年   189篇
  2016年   176篇
  2015年   121篇
  2014年   211篇
  2013年   285篇
  2012年   179篇
  2011年   207篇
  2010年   159篇
  2009年   110篇
  2008年   71篇
  2007年   42篇
  2006年   40篇
  2005年   29篇
  2004年   21篇
  2003年   12篇
  2002年   10篇
  2001年   6篇
  2000年   11篇
  1999年   3篇
  1998年   18篇
  1997年   6篇
  1996年   9篇
  1995年   8篇
  1994年   3篇
  1993年   7篇
  1992年   4篇
  1991年   3篇
  1990年   5篇
  1989年   6篇
  1988年   1篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   6篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   3篇
  1974年   2篇
  1973年   1篇
排序方式: 共有2813条查询结果,搜索用时 15 毫秒
161.
Nano-MgAl2O4 particles were successfully synthesized at 850 °C using the molten-salt method, and the effects of processing parameters, such as temperature, holding time and amount of salt on the crystallization of MgAl2O4 were investigated. Nano-alumina, magnesia and lithium chloride were used as starting materials. LiCl molten salt provided a liquid medium for reaction of Al2O3 and MgO to form MgAl2O4. The results demonstrated that MgAl2O4 started to form at about 650 °C and that, after the temperature was increased to 1000 °C, the amounts of MgAl2O4 in the resultant powders increased with a concomitant decrease in Al2O3 and MgO contents. After washing with hot-distilled water, the samples heated for 3 h at 850 °C were single-phase MgAl2O4 with 30–50 nm particle size. Furthermore, the synthesized MgAl2O4 particles retained the size and morphology of the Al2O3 powders, which indicated that a template formation mechanism dominated the formation of MgAl2O4 by molten-salt method.  相似文献   
162.
A series of segmented poly(urethane‐urea) block copolymers were synthesized with varying proportions of polydimethylsiloxane diols in combination with polytetramethylene ether glycol (PTMG) using 4,4'‐methylenediphenyl diisocyanate followed by chain extension with a (50:50 mol %) mixture of 4,4'‐methylene‐bis(3‐chloro‐2,6‐diethylaniline) (M‐CDEA) and 1,4‐butanediol (BD). The molecular structures of polydimethylsiloxane urethane‐ureas were characterized by ATR‐FTIR and 1H‐NMR spectroscopic techniques. Distribution of siloxane domain and its influence on surface roughness were investigated by scanning electron microscopy (SEM) and atomic forced microscopy (AFM), respectively. The mechanical and thermal properties of the elastomers were studied by thermogravimetric analysis, dynamical mechanical thermal analysis, and tensile measurement. The results showed that by incorporation of polydimethylsiloxane diol and M‐CDEA chain extender in polyurethane formulation, some improvements in thermal stability, fire resistance and surface hydrophilicity were achieved. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1743–1751, 2013  相似文献   
163.
It was shown that the physical filler-polymer and filler–filler interactions, apart from the filler surface chemistry, has a substantial role in controlling the vulcanization kinetics of styrene butadiene rubber filled with nano-silica in a sulfur vulcanization system. Kinetic studies by the oscillating disc rheometer, differential scanning calorimeter, and swelling tests revealed that the vulcanization rate goes through a maximum as loading of silica increases, but conversion in crosslinking continuously decreases as the amount of silica increases. The effect of silica loadings on the vulcanization reactions was linked to the immobilization of rubber chains around particles as well as in a polymer-mediated filler network, which were differentiated by the nonlinear viscoelastic behavior of rubber vulcanizates. By surface modification of nano-silica, the accelerating/decelerating effects of nano-silica on the vulcanization reactions were altered corresponding to the non-linear viscoelastic behavior of the vulcanizates. Therefore, a mechanism was proposed which correlates vulcanization kinetics of rubber to the dynamics of chains influenced by the reinforcing fillers.  相似文献   
164.
Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.  相似文献   
165.
166.
In this study, an iterative step‐by‐step procedure is proposed for optimal placement and design of viscoelastic dampers in order to achieve a target damping ratio based on simple equations and quick estimation. Through the procedure, the dampers are placed one by one in stories with maximum interstory drift at each sequence. Effect of lateral stiffness of added dampers and consequent changes in frequency of the structure as well as changes in damping characteristic of the structure after adding each damper are also considered at each sequence. In order to achieve an economical design, dampers are designed according to the lateral stiffness at each story of the main structure instead of using identical dampers in all stories. During the whole procedure, a time‐history analysis is performed at each sequence. Two numerical examples, including an 8‐story and a 15‐story building, are presented. The results indicate that optimal arrangement of dampers has a considerable influence on reduction of roof displacement up to 25% compared to uniformly distributed arrangement of dampers. In addition, with optimal arrangement, the number of dampers needed to achieve a specific interstory drift is significantly reduced, and the structural damping ratio is improved to a target value, reflecting global optimality of the proposed method.  相似文献   
167.
In this research, stress corrosion cracking (SCC) and corrosion behaviour of API 5L X52 carbon steel in 25?wt-% diethanolamine solution, saturated/unsaturated with carbon dioxide and containing 0 and 200?ppm hydrogen sulphide at different temperatures were investigated using slow strain rate test, electrochemical measurement and microscopic analysis. In addition, the presence of heat stable amine salts (HSASs) in the test solution was studied using spectrophotometry and Fourier transform infra-red spectroscopy. Analysis of the results showed that the primary components to form HSASs exist in the solution. The results indicated that SCC is more likely in solutions without amine. Increase in corrosion rate of carbon steel by increase in temperature was clearly observed and concluded that the simultaneous presence of hydrogen sulphide and carbon dioxide in the solution can increase the corrosion rate of carbon steel more than having one of the gases in the solution.  相似文献   
168.
Cold spray offers the possibility of obtaining almost zero-porosity buildups with no theoretical limit to the thickness. Moreover, cold spray can eliminate particle melting, evaporation, crystallization, grain growth, unwanted oxidation, undesirable phases and thermally induced tensile residual stresses. Such characteristics can boost its potential to be used as an additive manufacturing technique. Indeed, deposition via cold spray is recently finding its path toward fabrication of freeform components since it can address the common challenges of powder-bed additive manufacturing techniques including major size constraints, deposition rate limitations and high process temperature. Herein, we prepared nickel-based superalloy Inconel 718 samples with cold spray technique and compared them with similar samples fabricated by selective laser melting method. The samples fabricated using both methods were characterized in terms of mechanical strength, microstructural and porosity characteristics, Vickers microhardness and residual stresses distribution. Different heat treatment cycles were applied to the cold-sprayed samples in order to enhance their mechanical characteristics. The obtained data confirm that cold spray technique can be used as a complementary additive manufacturing method for fabrication of high-quality freestanding components where higher deposition rate, larger final size and lower fabrication temperatures are desired.  相似文献   
169.
In order to prepare a specific melanocortin type 2 receptor (MC2R) ligand, b1-24-corticotrophin was pre-pared in one-step reaction with [18F] SFB and b-1-24-corticotrophin pharmaceutical solution (1 mg/mL, pH=6.5). [18F]SFB was prepared in a semi-automated module in two steps with an overall radiochemical yield of 47% to EOB (not-decay corrected) in 90 min. The 18F-labeled intermediates and 18F-labeled peptide was checked by RTLC and HPLC. The results show that the radiochemical purity is >95% and the yield to EOB (not-decay corrected) is 29% for final 18F-labeled peptide at optimized conditions. Preliminary in vivo studies in normal mice were performed to deter-mine biodistribution of the 18F-labeled peptide for 150 min. The results show that the major tracer uptake is consistent with the natural distribution of MC2R receptors in mammals. Testes/blood and testes/muscle ratios for 18F-labeled peptide at 150 min were 184 and 1.56, respectively, and adipocyte/blood and adipocyte/muscle ratios at 120 min were 221 and 142, respectively. The data support the specific receptor binding of the radiolabeled peptide as reported for MC2R receptor accumulation in adipocytes and testes and demonstrates the retention of biological activity of the pep-tide. This tracer can be used in detection of MC2R distribution in malignancies and sex organ diseases.  相似文献   
170.
An experimental study was performed to investigate the impact of low salinity water on wettability alteration in carbonate core samples from southern Iranian reservoirs by spontaneous imbibition. In this paper, the effect of temperature, salinity, permeability and connate water were investigated by comparing the produced hydrocarbon curves. Contact angle measurements were taken to confirm the alteration of surface wettability of porous media. Oil recovery was enhanced by increasing the dilution ratio of sea water, and there existed an optimum dilution ratio at which the highest oil recovery was achieved. In addition, temperature had a very significant impact on oil recovery from carbonate rocks. Furthermore, oil recovery from a spontaneous imbibition process was directly proportional to the permeability of the core samples. The presence of connate water saturation inside the porous media facilitated oil production significantly. Also, the oil recovery from porous media was highly dependent on ion repulsion/attraction activity of the rock surface which directly impacts on the wettability conditions. Finally, the highest ion attraction percentage was measured for sodium while there was no significant change in pH for all experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号