The mobile cloud computing (MCC) has enriched the quality of services that the clients access from remote cloud‐based servers. The growth in the number of wireless users for MCC has further augmented the requirement for a robust and efficient authenticated key agreement mechanism. Formerly, the users would access cloud services from various cloud‐based service providers and authenticate one another only after communicating with the trusted third party (TTP). This requirement for the clients to access the TTP during each mutual authentication session, in earlier schemes, contributes to the redundant latency overheads for the protocol. Recently, Tsai et al have presented a bilinear pairing based multi‐server authentication (MSA) protocol, to bypass the TTP, at least during mutual authentication. The scheme construction works fine, as far as the elimination of TTP involvement for authentication has been concerned. However, Tsai et al scheme has been found vulnerable to server spoofing attack and desynchronization attack, and lacks smart card‐based user verification, which renders the protocol inapt for practical implementation in different access networks. Hence, we have proposed an improved model designed with bilinear pairing operations, countering the identified threats as posed to Tsai scheme. Additionally, the proposed scheme is backed up by performance evaluation and formal security analysis. 相似文献
Quadrifilar helix antenna (QHA) has its applications in satellite communications. This paper presents the performance optimisation of input and radiation characteristics of QHA in the presence of infinite and finite metallic ground planes. For the infinite ground plane, it has been observed that input parameters such as impedance and voltage standing wave ratio (VSWR) are stable, and the antenna has broader half power beamwidth (HPBW). Smaller metallic platforms that act as finite ground planes produce better 3‐dB axial ratio beamwidth and boresight axial ratio. Deployment of QHA on smaller metallic platforms such as nanosatellites and CubeSats enhances the circularly polarised beamwidth of the antenna with improved boresight axial ratio. However, on large low earth orbit (LEO) satellites, stable input characteristics and broader HPBW have been achieved at the cost of narrow circularly polarised beamwidth and degraded boresight axial ratio. 相似文献
Coexistence analysis is extremely important in examining the possibility for spectrum sharing between orthogonal frequency‐division multiplexing (OFDM)‐based international mobile telecommunications (IMT)‐Advanced and other wireless services. In this letter, a new closed form method is derived based on power spectral density analysis in order to analyze the coexistence of OFDM‐based IMT‐Advanced systems and broadcasting frequency modulation (FM) systems. The proposed method evaluates more exact interference power of IMT‐Advanced systems in FM broadcasting systems than the advanced minimum coupling loss (A‐MCL) method. Numerical results show that the interference power is 1.3 dB and 3 dB less than that obtained using the A‐MCL method at cochannel and adjacent channel, respectively. This reduces the minimum separation distance between the two systems, which eventually saves spectrum resources. 相似文献
Single point, sender based control does not scale well for multicast delivery. For applications, such as group video or teleconferencing a low total cost multicast tree is required. In this article we present a destination driven algorithm to minimize the total tree cost of multicast tree in a dynamic situation for the whole session duration. In this heuristic approach we considered the staying duration of participants are available at the time of joining. The performance of our algorithm is analyzed through extensive simulation and evaluated against several other existing dynamic multicast routing and also against one well known near optimum heuristic algorithm used for solving Steiner tree problem. We have further tested our algorithm using erroneous information given by the joining participants. Simulation results show that its performance does not degrade that much even when the range of error is considerably high, which proves the robustness of our algorithm. 相似文献
Point-of-care testing (POC) has the ability to detect chronic and infectious diseases early or at the time of occurrence and provide a state-of-the-art personalized healthcare system. Recently, wearable and flexible sensors have been employed to analyze sweat, glucose, blood, and human skin conditions. However, a flexible sensing system that allows for the real-time monitoring of throat-related illnesses, such as salivary parotid gland swelling caused by flu and mumps, is necessary. Here, for the first time, a wearable, highly flexible, and stretchable piezoresistive sensing patch based on carbon nanotubes (CNTs) is reported, which can record muscle expansion or relaxation in real-time, and thus act as a next-generation POC sensor. The patch offers an excellent gauge factor for in-plane stretching and spatial expansion with low hysteresis. The actual extent of muscle expansion is calculated and the gauge factor for applications entailing volumetric deformations is redefined. Additionally, a bluetooth-low-energy system that tracks muscle activity in real-time and transmits the output signals wirelessly to a smartphone app is utilized. Numerical calculations verify that the low stress and strain lead to excellent mechanical reliability and repeatability. Finally, a dummy muscle is inflated using a pneumatic-based actuator to demonstrate the application of the affixed wearable next-generation POC sensor. 相似文献
Telecommunication Systems - This paper proposes two algorithms for hybrid (Analog–Digital) beamforming in a single-user millimeter-wave (mm-wave) multi-input multi-output (MIMO) systems under... 相似文献
SDN enables a new networking paradigm probable to improve system efficiency where complex networks are easily managed and controlled. SDN allows network virtualization and advance programmability for customizing the behaviour of networking devices with user defined features even at run time. SDN separates network control and data planes. Intelligently controlled network management and operation, such that routing is eliminated from forwarding elements (switches) while shifting the routing logic in a centralized module named SDN Controller. Mininet is Linux based network emulator which is cost effective for implementing SDN having in built support of OpenFlow switches. This paper presents practical implementation of Mininet with ns-3 using Wi-Fi. Previous results reported in literature were limited upto 512 nodes in Mininet. Tests are conducted in Mininet by varying number of nodes in two distinct scenarios based on scalability and resource capabilities of the host system. We presented a low cost and reliable method allowing scalability with authenticity of results in real time environment. Simulation results show a marked improvement in time required for creating a topology designed for 3 nodes with powerful resources i.e. only 0.077 sec and 4.512 sec with limited resources, however with 2047 nodes required time is 1623.547 sec for powerful resources and 4615.115 sec with less capable resources respectively.
A series of experiments have been performed to investigate the influence of reaction temperature, the equivalence ratio (ER), and blending ratio on the gas composition, tar content and higher heating value (HHV) of synthesis gas. H2 content decreased from 10.7 to 8.2% in the range of BR while CO and CH4 increased from 17.4 to 23.1% and 3.4 to 6.3%, respectively. HHV increased with BR and H2/CO showed an opposite trend. The highest HHV and H2/CO were obtained at 100%PW and 100%OS, respectively. Tar content increased from 4.8 to 9.5?g/Nm3 with BR increasing in the range because of a reduction in the endothermic nature of volatile combustion. 相似文献