首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   7篇
电工技术   5篇
化学工业   20篇
机械仪表   3篇
建筑科学   8篇
能源动力   7篇
轻工业   3篇
无线电   4篇
一般工业技术   8篇
冶金工业   8篇
原子能技术   1篇
自动化技术   20篇
  2023年   1篇
  2022年   2篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2014年   6篇
  2013年   2篇
  2012年   10篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1990年   2篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1976年   1篇
  1967年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
11.
An infant born without toenails and without the middle and distal phalanges of the toes was otherwise normal, on clinical and radiological examination. This is the second case of this entity to be described. It is speculated that an environmental insult at the critical period of fetal toe development may be the cause of the anomaly, but a genetic factor cannot be excluded.  相似文献   
12.
In this work, we address the problem of compact cell topology selection for miniaturization of rat‐race couplers. The principal objective of the design process is to achieve the smallest possible footprint of the coupler, while maintaining the required levels of electrical parameters imposed on its components. Our approach permits identification of the minimum achievable coupler area, provided that the circuit is composed of a given compact cell and folded lines. This allows for the quantitative assessment of a set of considered cells with respect to the miniaturization capabilities they exhibit under certain design specifications. The proposed method is validated using 6 different cells with unified parameterization to identify the smallest rectangular‐like rat‐race coupler described by 2 design specifications. The obtained results attest that circuit topology and electrical parameters of the reference design are critical factors determining the final miniaturization rate. The proof‐of‐concept prototype devices occupy merely 8% of the conventional coupler area, while preserving fractional bandwidths (20% and 13.5%) of their conventional counterparts. The experimental results confirm the claims inferred from the numerical data.  相似文献   
13.
This article proposes a methodology for rapid design optimization of miniaturized wideband couplers. More specifically, a class of circuits is considered, in which conventional transmission lines are replaced by their abbreviated counterparts referred to as slow‐wave compact cells. Our focus is on explicit reduction of the structure size as well as on reducing the CPU cost of the design process. For the sake of computational feasibility, a surrogate‐based optimization paradigm involving a co‐simulation low‐fidelity model is used. The latter is a fundamental component of the proposed technique. The low‐fidelity model represents cascaded slow‐wave cells replacing the low‐impedance lines of the original coupler circuit. It is implemented in a circuit simulator (here, ADS) and consists of duplicated compact cell EM simulation data as well as circuit theory‐based feeding line models. Our primary optimization routine is a trust‐region‐embedded gradient search algorithm. To further reduce the design cost, the system response Jacobian is estimated at the level of the low‐fidelity model, which is sufficient due to good correlation between the low‐ and high‐fidelity models. The coupler is explicitly optimized for size reduction, whereas electrical performance parameters are controlled using a penalty function approach. The presented methodology is demonstrated through the design of a 1‐GHz wideband microstrip branch‐line coupler. Numerical results are supported by experimental validation of the fabricated coupler prototype.  相似文献   
14.
Estimation of energy output for small-scale wind power generators is the subject of this article. Monthly wind energy production is estimated using the Weibull-representative wind data for a total of 96 months, from 5 different locations in the world. The Weibull parameters are determined based on the wind distribution statistics calculated from the measured data, using the gamma function. The wind data in relative frequency format is obtained from these calculated Weibull parameters. The wind speed data in time-series format and the Weibull-representative wind speed data are used to calculate the wind energy output of a specific wind turbine. The monthly energy outputs calculated from the time-series and the Weibull-representative data are compared. It is shown that the Weibull-representative data estimate the wind energy output very accurately. The overall error in estimation of monthly energy outputs for the total 96 months is 2.79%.  相似文献   
15.
This paper demonstrates the feasibility of using phase stepping and a multicore optical fiber to calculate an object's depth profile. An interference pattern is projected by an optical fiber onto the object. The distorted interference pattern containing the object information is captured by a CCD camera and processed using a phase step interferometry method. The phase step method is less computationally intensive compared to two-dimensional Fourier transform profilometry and provides more accuracy when measuring objects of high frequency spatial variations.  相似文献   
16.
In most of arid and semi-arid regions, there are limited sources of available fresh water for different domestic and environmental demands. Strategic and parsimonious fresh water-use in water-scarce areas such as Southern New Mexico is crucially important. Elephant Butte and Caballo reservoirs are two integrated reservoirs in this region that provide water supply for many water users in downstream areas. Since Elephant Butte Reservoir is in a semi-arid region, it would be rational to utilize other energy sources such as wind energy to produce electricity and use the water supply to other critical demands in terms of time and availability. This study develops a strategy of optimal management of two integrated reservoirs to quantify the savable volume of water sources through optimal operation management. To optimize operations for the Elephant Butte and Caballo reservoirs as an integrated reservoir operation in New Mexico, the authors in this case study utilized two autoregressive integrated moving average models, one non-seasonal (daily, ARIMA model) and one seasonal (monthly, SARIMA model), to predict daily and monthly inflows to the Elephant Butte Reservoir. The coefficient of determination between predicted and observed daily values and the normalized mean of absolute error (NMAE) were 0.97 and 0.09, respectively, indicating that the daily ARIMA prediction model was significantly reliable and accurate for a univariate based streamflow forecast model. The developed time series prediction models were incorporated in a decision support system, which utilizes the predicted values for a day and a month ahead and leads to save significant amount of water volume by providing the optimal release schedule from Elephant Butte into the Caballo Reservoir. The predicted daily and monthly values from the developed ARIMA prediction models were integrated successfully with the dynamic operation model, which provides the optimal operation plans. The optimal operation plan significantly minimizes the total evaporation loss from both reservoirs by providing the optimal storage levels in both reservoirs. The saved volume of the water would be considered as a significant water supply for environmental conservation actions in downstream of the Caballo Reservoir. Providing an integrated optimal management plan for two reservoirs led to save significant water sources in a region that water shortage has led to significant environmental consequences. Finally, since the models are univariate, they demonstrate an approach for reliable inflow prediction when information is limited to only streamflow values. We find that hydroelectric power generation forces the region to lose significant amount of water to evaporation and therefore hinder the optimal use of freshwater. Based on these findings, we conclude that a water scarce region like Southern New Mexico should gain independence from hydroelectric power and save the freshwater for supporting ecosystem services and environmental purposes.  相似文献   
17.
The hot electron light emitting and lasing in semiconductor heterostructure-vertical-cavity semiconductor optical amplifier (HELLISH-VCSOA) device is based on Ga0.35In0.65 N0.02As0.08/GaAs material for operation in the 1.3-μm window of the optical communications. The device has undoped distributed Bragg reflectors (DBRs). Therefore, problems such as those associated with refractive index contrast and current injection, which are common with doped DBRs in conventional VCSOAs, are avoided. The gain versus applied electric field curves are measured at different wavelengths using a tunable laser as the source signal. The highest gain is obtained for the 1.3-μm wavelength when an electric field in excess of 2 kV/cm is applied along the layers of the device.  相似文献   
18.
19.
20.
In this article, fast electromagnetic (EM) simulation‐driven design optimization of compact microwave couplers is addressed. The main focus is on explicit reduction of the circuit footprint. Our methodology relies on the penalty function approach, which allows us to minimize the circuit area while ensuring equal power split between the output ports and providing a sufficient bandwidth with respect to the return loss and isolation around the operating frequency. Computational efficiency of the design process is achieved by exploiting variable‐fidelity EM simulations, local response surface approximation models, as well as suitable response correction techniques for design tuning. The technique described in this work is demonstrated using two examples of compact rat‐race couplers. The size‐reduction‐oriented designs are compared with performance‐oriented ones to illustrate available design trade‐offs. Final design solutions of the former case illustrate ~92% of miniaturization for both coupler examples (with corresponding fractional bandwidths of 16%). Alternative design solutions pertaining to the latter case show a lesser size reduction (~90% for both examples), but present a much wider bandwidths (~25% for both couplers). The overall computational cost of the design procedure corresponds to about 20 and 10 high‐fidelity coupler simulations for the first and second design example, respectively. Numerical results are also validated experimentally. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:27–35, 2016.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号