首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   699篇
  免费   34篇
  国内免费   7篇
电工技术   11篇
化学工业   155篇
金属工艺   16篇
机械仪表   31篇
建筑科学   12篇
矿业工程   1篇
能源动力   45篇
轻工业   101篇
水利工程   2篇
石油天然气   1篇
无线电   52篇
一般工业技术   153篇
冶金工业   13篇
原子能技术   14篇
自动化技术   133篇
  2024年   3篇
  2023年   21篇
  2022年   32篇
  2021年   40篇
  2020年   33篇
  2019年   34篇
  2018年   42篇
  2017年   23篇
  2016年   40篇
  2015年   25篇
  2014年   36篇
  2013年   92篇
  2012年   43篇
  2011年   56篇
  2010年   21篇
  2009年   22篇
  2008年   15篇
  2007年   20篇
  2006年   15篇
  2005年   18篇
  2004年   9篇
  2003年   5篇
  2002年   7篇
  2001年   2篇
  1999年   3篇
  1998年   9篇
  1997年   4篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1989年   5篇
  1988年   2篇
  1987年   6篇
  1986年   1篇
  1985年   1篇
  1984年   6篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1979年   6篇
  1978年   4篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1970年   2篇
  1969年   1篇
排序方式: 共有740条查询结果,搜索用时 15 毫秒
101.

This article proposes an improved learning based super resolution scheme using manifold learning for texture images. Pseudo Zernike moment (PZM) has been employed to extract features from the texture images. In order to efficiently retrieve similar patches from the training patches, feature similarity index matrix (FSIM) has been used. Subsequently, for reconstruction of the high resolution (HR) patch, a collaborative optimal weight is generated from the least square (LS) and non-negative matrix factorization (NMF) methods. The proposed method is tested on some color texture, gray texture, and some standard images. Results of the proposed method on texture images advocate its superior performance over established state-of-the-art methods.

  相似文献   
102.

Non-conventional machining processes always suffer due to their low productivity and high cost. However, a suitable machining process should improve its productivity without compromising product quality. This implies the necessity to use efficient multi-objective optimization algorithm in non-conventional machining processes. In this present paper, an effective standard deviation based multi-objective fire-fly algorithm is proposed to predict various process parameters for maximum productivity (without affecting product quality) during WEDM of Indian RAFM steel. The process parameters of WEDM considered for this study are: pulse current (I), pulse-on time (T on), pulse-off time (T off) and wire tension (WT).While, cutting speed (CS) and surface roughness (SR) were considered as machining performance parameters. Mathematical models relating the process and response parameters had been developed by linear regression analysis and standard deviation method was used to convert this multi objective into single objective by unifying the responses. The model was then implemented in firefly algorithm in order to optimize the process parameters. The computational results depict that the proposed method is well capable of giving optimal results in WEDM process and is fairly superior to the two most popular evolutionary algorithms (particle swarm optimization algorithm and differential evolution algorithm) available in the literature.

  相似文献   
103.
Advanced nanometer technologies have led to a drastic increase in operational frequencies resulting in the performance of circuits becoming increasingly vulnerable to timing variations. The increasing process spread in advanced nanometer nodes poses considerable challenges in predicting post-fabrication silicon performance from timing models. Thus, there is a great need to qualify basic building structures on silicon in terms of critical parameters before they could be integrated within a complex System-on-Chip (SoC). The work of this paper presents a configurable circuit and an associated power-aware at-speed test methodology for the purpose of qualifying basic standard cells and complex IP structures to detect the presence of timing faults. Our design has been embedded within test-chips used for the development of the 28 nm Fully Depleted Silicon On Insulator (FD-SOI) technology node. The relevant silicon results and analysis validate the proposed power-aware test methodology for qualification and characterization of IPs and provide deeper insights for process improvements.  相似文献   
104.
Satti RP  Kolhe PS  Olcmen S  Agrawal AK 《Applied optics》2007,46(15):2954-2962
Recent interest in small-scale flow devices has created the need for miniature instruments capable of measuring scalar flow properties with high spatial resolution. We present a miniature rainbow schlieren deflectometry system to nonintrusively obtain quantitative species concentration and temperature data across the whole field. The optical layout of the miniature system is similar to that of a macroscale system, although the field of view is smaller by an order of magnitude. Employing achromatic lenses and a CCD array together with a camera lens and extension tubes, we achieved spatial resolution down to 4 mum. Quantitative measurements required a careful evaluation of the optical components. The capability of the system is demonstrated by obtaining concentration measurements in a helium microjet (diameter, d=650 microm) and temperature and concentration measurements in a hydrogen jet diffusion flame from a microinjector (d=50 microm). Further, the flow field of underexpanded nitrogen jets is visualized to reveal details of the shock structures existing downstream of the jet exit.  相似文献   
105.
106.
Magnesium is a promising candidate as a solid fuel for energetic applications, however, the diffusion-controlled oxidation mechanism impedes its reaction with an oxidizer, often resulting in diminished performance. In this study, non-thermal plasma processing is implemented to modify the surface of magnesium nanoparticles with silicon in-flight, in the gas-phase to enhance the rate of interfacial reactions and tune the ignition pathways. Allowing the silicon coating to partially oxidize provides direct contact between the fuel and oxidizer, resulting in a nanostructured thermite system at the single particle level. The proximal distance between oxidizer and fuel directly impacts the ignition temperature and, therefore, the combustion kinetics. An intermetallic reaction occurs within the magnesium/silicon system to supplement the heating of the magnesium fuel to initiate its reaction with the oxidizer, resulting in highly reduced ignition thresholds. The ignition temperature is lowered significantly from ≈740 °C for magnesium particles with a native oxide layer to ≈520 °C for particles coated via the in-flight plasma process.  相似文献   
107.
Recently, an innovative trend like cloud computing has progressed quickly in Information Technology. For a background of distributed networks, the extensive sprawl of internet resources on the Web and the increasing number of service providers helped cloud computing technologies grow into a substantial scaled Information Technology service model. The cloud computing environment extracts the execution details of services and systems from end-users and developers. Additionally, through the system’s virtualization accomplished using resource pooling, cloud computing resources become more accessible. The attempt to design and develop a solution that assures reliable and protected authentication and authorization service in such cloud environments is described in this paper. With the help of multi-agents, we attempt to represent Open-Identity (ID) design to find a solution that would offer trustworthy and secured authentication and authorization services to software services based on the cloud. This research aims to determine how authentication and authorization services were provided in an agreeable and preventive manner. Based on attack-oriented threat model security, the evaluation works. By considering security for both authentication and authorization systems, possible security threats are analyzed by the proposed security systems.  相似文献   
108.
109.
110.
The simulation and experimental studies of an aperture‐coupled wideband dual segment rectangular dielectric resonator antenna with metamaterial for C‐band applications are presented in this paper. The antenna consists of Alumina (Al2O3) ceramic as upper segment and Teflon as lower segment. The combination of circular‐shaped coplanar split‐ring resonator and conducting strip has been used as metamaterial superstrate. With the use of metamaterial superstrate, the bandwidth of the antenna is increased by 48% through simulation and 22% experimentally. The broadside radiation pattern of the antenna is converted into directive radiation pattern with reduced beamwidth when metamaterial superstrate is used. The peak gain of the antenna is also enhanced by 33% through simulation and 31% experimentally with the use of metamaterial superstrate. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:646–655, 2014.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号