首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   598篇
  免费   17篇
电工技术   4篇
化学工业   165篇
金属工艺   30篇
机械仪表   10篇
建筑科学   21篇
能源动力   22篇
轻工业   44篇
水利工程   1篇
无线电   68篇
一般工业技术   99篇
冶金工业   45篇
原子能技术   5篇
自动化技术   101篇
  2023年   5篇
  2022年   10篇
  2021年   17篇
  2020年   8篇
  2019年   17篇
  2018年   13篇
  2017年   13篇
  2016年   16篇
  2015年   16篇
  2014年   31篇
  2013年   48篇
  2012年   37篇
  2011年   49篇
  2010年   33篇
  2009年   37篇
  2008年   36篇
  2007年   40篇
  2006年   16篇
  2005年   17篇
  2004年   12篇
  2003年   13篇
  2002年   12篇
  2001年   13篇
  2000年   8篇
  1999年   7篇
  1998年   7篇
  1997年   7篇
  1996年   4篇
  1995年   4篇
  1994年   8篇
  1993年   7篇
  1992年   2篇
  1991年   8篇
  1990年   4篇
  1989年   7篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1971年   1篇
  1966年   1篇
排序方式: 共有615条查询结果,搜索用时 11 毫秒
601.
In the literature, the color information of the pixels of an image has been represented by different structures. Recently, algebraic entities such as quaternions or Clifford algebras have been used to perform image processing for example. This paper presents the embedding of color information into the vectorial parts of a multivector. This multivector is an element of the geometric or Clifford algebra constructed from a three-dimensional vector space. This formalism presents the advantage of algebraically separating colors which are handled entities from the geometric operations done to them. We propose to introduce several contributions for color image processing by using this Clifford algebra. First, as colors are represented by 1-vectors, we point out that a color pixel given in the RGB color space can be expressed algebraically by its hue saturation and value using the geometry. Then, we illustrate how this formalism can be used to define color alterations with algebraic operations. We generalize linear filtering algorithms already defined with quaternions and define a new color edge detector. Finally, the application of the new color gradient is illustrated by a new color formulation of snakes. Thus, we propose in this paper the definition and exploitation of a formalism in which we geometrically handle colors with algebraic entities and expressions.  相似文献   
602.
603.
In this paper, an efficient and reliable neural active power filter (APF) to estimate and compensate for harmonic distortions from an AC line is proposed. The proposed filter is completely based on Adaline neural networks which are organized in different independent blocks. We introduce a neural method based on Adalines for the online extraction of the voltage components to recover a balanced and equilibrated voltage system, and three different methods for harmonic filtering. These three methods efficiently separate the fundamental harmonic from the distortion harmonics of the measured currents. According to either the Instantaneous Power Theory or to the Fourier series analysis of the currents, each of these methods are based on a specific decomposition. The original decomposition of the currents or of the powers then allows defining the architecture and the inputs of Adaline neural networks. Different learning schemes are then used to control the inverter to inject elaborated reference currents in the power system. Results obtained by simulation and their real-time validation in experiments are presented to compare the compensation methods. By their learning capabilities, artificial neural networks are able to take into account time-varying parameters, and thus appreciably improve the performance of traditional compensating methods. The effectiveness of the algorithms is demonstrated in their application to harmonics compensation in power systems  相似文献   
604.
We propose a new parallelization scheme for the hmmsearch function of the HMMER software, in order to target FPGA technology. hmmsearch is a very compute intensive software for biological sequence alignment, based on profile hidden Markov models. We derive a flexible, generic, scalable hardware parallel architecture which can accelerate the core of hmmsearch by nearly two orders of magnitude, without modifying the original algorithm of this software. Our derivation is based on the expression of the algorithm as a set of recurrence equations, and we show in a systematic way how a very efficient parallel version of the algorithm can be found by combining scheduling, projection, partitioning, pipelining and precision analysis. We present the performance of the implementation of this parallel algorithm on a FPGA platform.  相似文献   
605.
This paper reviews various concepts and solutions of time-invariant and time-varying multirate filter banks. It discusses their performance for image and video coding at low bit rates, and their applicability in the mpeg-4 framework. Time-invariant multirate filter banks, and methods of design with different criteria appropriate for signal compression are first presented. Several procedures of quantization, namely scalar and lattice vector quantization, with bit allocation optimized in the rate-distortion sense, are used for the encoding of the subband signals. A technique of rate-constrained lattice vector quantization (rc-lvq), combined with a three components entropy coding, allow, together with distortion psychovi-sual weighting mechanisms to obtain significant visual improvements versus scalar quantization or the zerotree technique. However, time-invariant multirate filter banks, although efficient in terms of compression, are not well suited for content-based functionalities. Content-based features may require the ability to manipulate and thus encode a given region in the scene independently of the neighbouring regions, hence the use of transformations that can be adapted to arbitrary size bounded supports. Also, to increase the compression efficiency, one may want to adapt the transformation to the region characteristics, and thus use transform switching mechanisms, with soft or hard transitions. Three main classes of transformations can address these problems: shape-adaptive block transforms, transforms relying on signal extensions and transforms relying on time-varying multirate filter banks. These various solutions, with their methods of design, are reviewed. Emphasis is put on an extension of the SDF (symmetric delay factorization) technique which opens new perspectives in the design of time-bounded and time-varying filter banks. A region-adapted rate-distortion quantization algorithm has been used in the evaluation of the transformations compression efficiency. The coding results illustrate the interest of these techniques for compression but also for features such as quality scalability applied to selected regions of the image.  相似文献   
606.
This study presents a new 3D printing process, the Diels–Alder reversible thermoset (DART) process, and a first generation of printable DART resins, which exhibit thermoset properties at use temperatures, ultralow melt viscosity at print temperatures, smooth part surface finish, and as‐printed isotropic mechanical properties. This study utilizes dynamic covalent chemistry based on reversible furan‐maleimide Diels–Alder linkages in the polymers, which can be decrosslinked and melt‐processed during printing between 90 and 150 °C, and recrosslinked at lower temperatures to their entropically favored state. This study compares the first generation of DART materials to commonly 3D printed high‐toughness thermoplastics. Parts printed from typical fused filament fabrication compatible materials exhibit anisotropy of more than 50% and sometimes upward of 98% in toughness when deformed along the build direction, while the first generation of DART materials exhibit less than 4% toughness reduction when deformed along the build direction. At room temperature, the toughest DART materials exhibit baseline toughness of 18.59 ± 0.91 and 18.36 ± 0.57 MJ m?3 perpendicular and parallel to the build direction, respectively. DART printing will enable chemists, polymer engineers, materials scientists, and industrial designers to translate new robust materials possessing targeted thermomechanical properties, multiaxial toughness, smooth surface finish, and low anisotropy.  相似文献   
607.
The analysis of the surface chemistry of carbon materials is of prime importance in numerous applications, but it is still a challenge to identify and quantify the surface functional groups which are present on a given carbon. Temperature programmed desorption with mass spectrometry analysis (TPD-MS) and X-ray photoelectron spectroscopy with an in situ heating device (TPD-XPS) were combined in order to improve the characterization of carbon surface chemistry. TPD-MS analysis allowed the quantitative analysis of the released gases as a function of temperature, while the use of a TPD device inside the XPS setup enabled the determination of the functional groups that remain on the surface at the same temperatures. TPD-MS results were then used to add constraints on the deconvolution of the O1s envelope of the XPS spectra. Furthermore, a better knowledge of the evolution of oxygen functional groups with temperature during a thermal treatment could be obtained. Hence, we show here that the combination of these two methods allows to increase the reliability of the analysis of the surface chemistry of carbon materials.  相似文献   
608.
Equine growth hormone (eGH) has been available since 1998 as an approved drug (EquiGen-5, Bresagen) containing recombinant eGH (reGH). It is suspected of being illegally administered to racehorses in order to improve physical performance and to speed-up wound healing. Thus it may be considered a doping agent which would require a sensitive and reliable method of identification and confirmation in order to regulate its use in racehorses. reGH differs from the native eGH by an additional methionine at the N-terminal (met-eGH) and has never been unambiguously detected in any type of biological matrix at trace concentrations (1-10 microg/L). A plasma sample (4 mL) was treated with ammonium sulfate at the reGH isoelectric point and the pellet was purified by solid-phase extraction. Specific peptides were generated by trypsin digestion and analyzed by LC-MS/MS. The detection limit was 1 microg/L. The method was validated according to European Union regulation (DEC/2002/657/EC) and the Association of Official Racing Chemists (AORC) requirements. Furthermore, it was successfully applied to determining the plasma concentrations of reGH with time using linear ion trap mass analyzer. The presence of this prohibited hormone (reGH) was also successfully detected by triple quadrupole mass spectrometry up to 48 h postadministration of reGH to a horse. The present LC-MS/MS method is the first with adequate sensitivity and specificity for detection of reGH, rbGH, and endogenous eGH. Hence, an efficient analytical tool is proposed as a means to fulfilling the regulation of reGH abuse in the horse racing industry.  相似文献   
609.
A Mixed Finite Element (MFE) method for 3D non-steady flow of a viscoelastic compressible fluid is presented. It was used to compute polymer injection flows in a complex mold cavity, which involves moving free surfaces. The flow equations were derived from the Navier-Stokes incompressible equations, and we extended a mixed finite element method for incompressible viscous flow to account for compressibility (using the Tait model) and viscoelasticity (using a Pom-Pom like model). The flow solver uses tetrahedral elements and a mixed velocity/pressure/extra-stress/density formulation, where elastic terms are solved by decoupling our system and density variation is implicitly considered. A new DEVSS-like method is also introduced naturally from the MINI-element formulation. This method has the great advantage of a low memory requirement. At each time slab, once the velocity has been calculated, all evolution equations (free surface and material evolution) are solved by a space-time finite element method. This method is a generalization of the discontinuous Galerkin method, that shows a strong robustness with respect to both re-entrant corners and flow front singularities. Validation tests of the viscoelastic and free surface models implementation are shown, using literature benchmark examples. Results obtained in industrial 3D geometries underline the robustness and the efficiency of the proposed methods.  相似文献   
610.
During field tests, there is almost no effective way to control thermal changes in concrete structures. It is obvious that temperature fluctuations influence nonlinear acoustic behavior of concrete, which may lead to incoherent results during field investigations. The research presented herein was conducted to assess the effects of temperature changes on the nonlinear acoustic behavior of the reinforced concrete using Time Shift method. The Time Shift method, based on dynamic acoustoelastic principle, takes its roots from the coda wave interferometry method and combines it with the study of the nonlinear behavior in cementitious materials in a methodological manner that allows field investigations. Near-to-field environmental conditions were simulated in the laboratory using an automatic climatic room. The specimens were subjected to temperature changes ranging from \(-\) 10 to 40  \(^{\circ }\) C. Such a thermal regime is close to the thermal conditions prevailing for most concrete structures. The effect of the temperature variations was assessed in both sound and damaged concrete elements affected by alkali–silica reaction (ASR). The test-results demonstrate that the nonlinear acoustic responses of concrete depend on the temperature. However, the nonlinear parameter seems to get minimized in low temperatures ranging from \(-\) 10 to 10  \(^{\circ }\) C. Moreover, the state of medium (i.e. intact or damaged) can alter the sensitivity level of the nonlinear behavior to temperature variations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号