收费全文 | 54636篇 |
免费 | 7644篇 |
国内免费 | 3810篇 |
电工技术 | 5403篇 |
技术理论 | 2篇 |
综合类 | 4627篇 |
化学工业 | 7392篇 |
金属工艺 | 3102篇 |
机械仪表 | 3908篇 |
建筑科学 | 4458篇 |
矿业工程 | 1994篇 |
能源动力 | 1725篇 |
轻工业 | 4383篇 |
水利工程 | 1503篇 |
石油天然气 | 2665篇 |
武器工业 | 778篇 |
无线电 | 7218篇 |
一般工业技术 | 5325篇 |
冶金工业 | 2007篇 |
原子能技术 | 891篇 |
自动化技术 | 8709篇 |
2024年 | 930篇 |
2023年 | 1074篇 |
2022年 | 2099篇 |
2021年 | 2925篇 |
2020年 | 2089篇 |
2019年 | 1628篇 |
2018年 | 1787篇 |
2017年 | 2018篇 |
2016年 | 1897篇 |
2015年 | 2754篇 |
2014年 | 3394篇 |
2013年 | 3959篇 |
2012年 | 4690篇 |
2011年 | 4726篇 |
2010年 | 4316篇 |
2009年 | 4075篇 |
2008年 | 3855篇 |
2007年 | 3685篇 |
2006年 | 3314篇 |
2005年 | 2582篇 |
2004年 | 1825篇 |
2003年 | 1305篇 |
2002年 | 1272篇 |
2001年 | 993篇 |
2000年 | 741篇 |
1999年 | 518篇 |
1998年 | 320篇 |
1997年 | 250篇 |
1996年 | 229篇 |
1995年 | 206篇 |
1994年 | 136篇 |
1993年 | 78篇 |
1992年 | 81篇 |
1991年 | 53篇 |
1990年 | 46篇 |
1989年 | 34篇 |
1988年 | 21篇 |
1987年 | 12篇 |
1986年 | 17篇 |
1985年 | 10篇 |
1984年 | 13篇 |
1982年 | 9篇 |
1981年 | 9篇 |
1980年 | 16篇 |
1979年 | 12篇 |
1978年 | 7篇 |
1977年 | 9篇 |
1976年 | 18篇 |
1959年 | 8篇 |
1951年 | 6篇 |
随着生物技术的不断发展和生物学数据的大量产出,传统生物学数据分析方式不足以应对日益复杂庞大的生物序列数据. 面对这种情况,国内外学者逐步将深度学习应用到生物学分析中,利用其处理高维数据的优势,取得了一系列进展,并成为生物序列数据分析中的研究热门. 为了更好地了解深度学习在生物序列数据分析领域中的新进展,对该领域研究现状进行了综述. 首先,介绍深度学习应用到生物序列数据分析中的重要意义;其次,对目前应用领域中具有代表性的深度学习模型进行阐述;然后,分析深度学习在生物学领域的应用研究现状;最后,说明目前深度学习在生物学领域中的局限性,并进一步提出未来发展应考虑的因素.
相似文献Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output (MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control (ILC) scheme based on the zeroing neural networks (ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer (IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise, an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.
相似文献Goal-conditioned reinforcement learning (RL) is an interesting extension of the traditional RL framework, where the dynamic environment and reward sparsity can cause conventional learning algorithms to fail. Reward shaping is a practical approach to improving sample efficiency by embedding human domain knowledge into the learning process. Existing reward shaping methods for goal-conditioned RL are typically built on distance metrics with a linear and isotropic distribution, which may fail to provide sufficient information about the ever-changing environment with high complexity. This paper proposes a novel magnetic field-based reward shaping (MFRS) method for goal-conditioned RL tasks with dynamic target and obstacles. Inspired by the physical properties of magnets, we consider the target and obstacles as permanent magnets and establish the reward function according to the intensity values of the magnetic field generated by these magnets. The nonlinear and anisotropic distribution of the magnetic field intensity can provide more accessible and conducive information about the optimization landscape, thus introducing a more sophisticated magnetic reward compared to the distance-based setting. Further, we transform our magnetic reward to the form of potential-based reward shaping by learning a secondary potential function concurrently to ensure the optimal policy invariance of our method. Experiments results in both simulated and real-world robotic manipulation tasks demonstrate that MFRS outperforms relevant existing methods and effectively improves the sample efficiency of RL algorithms in goal-conditioned tasks with various dynamics of the target and obstacles.
相似文献Cross-document relation extraction (RE), as an extension of information extraction, requires integrating information from multiple documents retrieved from open domains with a large number of irrelevant or confusing noisy texts. Previous studies focus on the attention mechanism to construct the connection between different text features through semantic similarity. However, similarity-based methods cannot distinguish valid information from highly similar retrieved documents well. How to design an effective algorithm to implement aggregated reasoning in confusing information with similar features still remains an open issue. To address this problem, we design a novel local-to-global causal reasoning (LGCR) network for cross-document RE, which enables efficient distinguishing, filtering and global reasoning on complex information from a causal perspective. Specifically, we propose a local causal estimation algorithm to estimate the causal effect, which is the first trial to use the causal reasoning independent of feature similarity to distinguish between confusing and valid information in cross-document RE. Furthermore, based on the causal effect, we propose a causality guided global reasoning algorithm to filter the confusing information and achieve global reasoning. Experimental results under the closed and the open settings of the large-scale dataset CodRED demonstrate our LGCR network significantly outperforms the state-of-the-art methods and validate the effectiveness of causal reasoning in confusing information processing.
相似文献