首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77161篇
  免费   8295篇
  国内免费   4114篇
电工技术   6137篇
技术理论   9篇
综合类   5886篇
化学工业   11624篇
金属工艺   4698篇
机械仪表   4902篇
建筑科学   6348篇
矿业工程   2670篇
能源动力   2272篇
轻工业   4913篇
水利工程   1798篇
石油天然气   4104篇
武器工业   960篇
无线电   9013篇
一般工业技术   8585篇
冶金工业   3309篇
原子能技术   1014篇
自动化技术   11328篇
  2024年   424篇
  2023年   1500篇
  2022年   3030篇
  2021年   4010篇
  2020年   3026篇
  2019年   2325篇
  2018年   2664篇
  2017年   2910篇
  2016年   2654篇
  2015年   3708篇
  2014年   4446篇
  2013年   5244篇
  2012年   5827篇
  2011年   6214篇
  2010年   5261篇
  2009年   4919篇
  2008年   4740篇
  2007年   4350篇
  2006年   4175篇
  2005年   3464篇
  2004年   2316篇
  2003年   1775篇
  2002年   1612篇
  2001年   1379篇
  2000年   1296篇
  1999年   1219篇
  1998年   994篇
  1997年   774篇
  1996年   765篇
  1995年   602篇
  1994年   484篇
  1993年   337篇
  1992年   295篇
  1991年   177篇
  1990年   142篇
  1989年   113篇
  1988年   110篇
  1987年   70篇
  1986年   48篇
  1985年   37篇
  1984年   22篇
  1983年   21篇
  1982年   17篇
  1981年   12篇
  1980年   16篇
  1979年   8篇
  1976年   9篇
  1975年   3篇
  1959年   10篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Covalent organic frameworks (COFs) with various topologies are typically synthesized by selecting and designing connecting units with rich shapes. However, this process is time-consuming and labour-intensive. Besides, the tight stacking of COFs layers greatly restrict their structural advantages. It is crucial to effectively exploit the high porosity and active sites of COFs by topological design. Herein, for the first time, inducing in situ topological changes in sub-chemometric COFs by adding graphene oxide (GO) without replacing the monomer, is proposed. Surprisingly, GO can slow down the intermolecular stacking and induce rearrangement of COFs nanosheets. The channels of D- [4+3] COFs are significantly altered while the stacking of periodically expanded framework is weakened. This not only maximizes the exposure of pore area and polar groups, but also shortens the channels and increases the redox activity, which enables high loading while enhancing host-guest interactions. This topological transformation to exhibit the structural features of COFs for efficient application is an innovative molecular design strategy.  相似文献   
992.
Ti3C2 MXenes with different halogen modifications are prepared rapidly and efficiently by microwave molten salt method, and the MXene surface functional group modification is successfully achieved to address the problems of low purity, complex functional groups, and uncontrollable energy band structure of MXenes obtained by traditional liquid phase etching. Among them, the modification of the iodine (I) functional group onto the surface of Ti3C2 changes the energy band structure and band gap, resulting in easier photoexcitation and more photogenerated carriers. The increased Fermi energy is closer to the conduction band, the decreased surface work function weakens the electron confinement ability. The photogenerated carriers can migrate to the surface of the material more easily with extended lifetime, so the activity of the catalyst is improved. Further, for gaseous monomeric mercury (Hg0) photo-oxidative removal, Ti3C2-I2 exhibits 85.5% efficiency of Hg0 photo-oxidative removal under visible light. Based on the experimental characterization and density functional theory calculations, a mechanism for the photo-oxidative removal of Hg° from Ti3C2-I2 MXene is proposed, which provides a valuable strategy for studying Ti3C2 MXenes in the field of photocatalysis.  相似文献   
993.
Reverse water-gas shift (RWGS) reaction is the initial and necessary step of CO2 hydrogenation to high value-added products, and regulating the selectivity of CO is still a fundamental challenge. In the present study, an efficient catalyst (CuZnNx@C-N) composed by Zn single atoms and Cu clusters stabilized by nitrogen sites is reported. It contains saturated four-coordinate Zn-N4 sites and low valence CuNx clusters. Monodisperse Zn induces the aggregation of pyridinic N to form Zn-N4 and N4 structures, which show strong Lewis basicity and has strong adsorption for *CO2 and *COOH intermediates, but weak adsorption for *CO, thus greatly improves the CO2 conversion and CO selectivity. The catalyst calcined at 700 °C exhibits the highest CO2 conversion of 43.6% under atmospheric pressure, which is 18.33 times of Cu-ZnO and close to the thermodynamic equilibrium conversion rate (49.9%) of CO2. In the catalytic process, CuNx not only adsorbs and activates H2, but also cooperates with the adjacent Zn-N4 and N4 structures to jointly activate CO2 molecules and further promotes the hydrogenation of CO2. This synergistic mechanism will provide new insights for developing efficient hydrogenation catalysts.  相似文献   
994.
Cobalt phthalocyanine (CoPc) anchored on heterogeneous scaffold has drawn great attention as promising electrocatalyst for carbon dioxide reduction reaction (CO2RR), but the molecule/substrate interaction is still pending for clarification and optimization to maximize the reaction kinetics. Herein, a CO2RR catalyst is fabricated by affixing CoPc onto the Mg(OH)2 substrate primed with conductive carbon, demonstrating an ultra-low overpotential of 0.31 ± 0.03 V at 100 mA cm−2 and high faradaic efficiency of >95% at a wide current density range for CO production, as well as a heavy-duty operation at 100 mA cm−2 for more than 50 h in a membrane electrode assembly. Mechanistic investigations employing in situ Raman and attenuated total reflection surface-enhanced infrared absorption spectroscopy unravel that Mg(OH)2 plays a pivotal role to enhance the CO2RR kinetics by facilitating the first-step electron transfer to form anionic *CO2 intermediates. DFT calculations further elucidate that introducing Lewis acid sites help to polarize CO2 molecules absorbed at the metal centers of CoPc and consequently lower the activation barrier. This work signifies the tailoring of catalyst-support interface at molecular level for enhancing the turnover rate of CO2RR.  相似文献   
995.
The poor interface quality between nickel oxide (NiOx) and halide perovskites limits the performance and stability of NiOx-based perovskite solar cells (PSCs). Here a reactive surface modification approach based on the in situ decomposition of urea on the NiOx surface is reported. The pyrolysis of urea can reduce the high-valence state of nickel and replace the adsorbed hydroxyl group with isocyanate. Combining theoretical and experimental analyses, the treated NiOx films present suppressed surface states and improved transport energy level alignment with the halide perovskite absorber. With this strategy, NiOx-based PSCs achieve a champion power conversion efficiency (PCE) of 23.61% and a fill factor of over 86%. The device's efficiency remains above 90% after 2000 h of thermal aging at 85 °C. Furthermore, perovskite solar modules achieve PCE values of 18.97% and 17.18% for areas of 16 and 196 cm2, respectively.  相似文献   
996.
Solar steam generation (SSG) through hydrogel-based evaporators has shown great promise for freshwater production. However, developing hydrogel-based evaporators with stable SSG performance in high-salinity brines remains challenging. Herein, phase-separated polyzwitterionic hydrogel-based evaporators are presented with sponge-like structures comprising interconnected pores for stable SSG performance, which are fabricated by photopolymerization of sulfobetaine methacrylate (SBMA) in water-dimethyl sulfoxide (DMSO) mixed solvents. It is shown that driven by competitive adsorption, the structures of the resulting poly(sulfobetaine methacrylate) (PSBMA) hydrogels can be readily tuned by the volume ratio of DMSO to achieve phase separation. The optimized phase-separated PSBMA hydrogels, combining the unique anti-polyelectrolyte effects of polyzwitterionic hydrogels, demonstrate a rapid water transport capability in brines. After introducing photothermal polypyrrole particles on the surface of the phase-separated PSBMA hydrogel evaporators, a stable water evaporation rate of ≈2.024 kg m−2 h−1 and high solar-to-vapor efficiency of ≈97.5% in a 3.5 wt.% brine are obtained under simulated solar light irradiation (1.0 kW m−2). Surprisingly, the evaporation rates remain stable even under high-intensity solar irradiation (2.0 kW m−2). It is anticipated that the polyzwitterionic hydrogel evaporators with sponge-like porous structures will contribute to developing SSG technology for high-salinity seawater applications.  相似文献   
997.
The detection of ultraviolet (UV) radiation with effective performance and robust stability is essential to practical applications. Metal halide single-crystal perovskites (ABX3) are promising next-generation materials for UV detection. The device performance of all-inorganic CsPbCl3 photodetectors (PDs) is still limited by inner imperfection of crystals grown in solution. Here wafer-scale single-crystal CsPbCl3 thin films are successfully grown by vapor-phase epitaxy method, and the as-constructed PDs under UV light illumination exhibit an ultralow dark current of 7.18 pA, ultrahigh ON/OFF ratio of ≈5.22 × 105, competitive responsivity of 32.8 A W−1, external quantum efficiency of 10867% and specific detectivity of 4.22 × 1012 Jones. More importantly, they feature superb long-term stability toward moisture and oxygen within twenty-one months, good temperature tolerances at low and high temperatures. The ability of the photodetector arrays for excellent UV light imaging is further demonstrated.  相似文献   
998.
2D Ti3C2Tx MXene, possessing facile preparation, high electrical conductivity, flexibility, and solution processability, shows good application potential for enhancing device performance of perovskite solar cells (PVSCs). In this study, tetrabutylammonium bromide functionalized Ti3C2Tx (TBAB-Ti3C2Tx) is developed as cathode buffer layer (CBL) to regulate the PCBM/Ag cathode interfacial property for the first time. By virtue of the charge transfer from TBAB to Ti3C2Tx demonstrated by electron paramagnetic resonance and density functional theory, the TBAB-Ti3C2Tx CBL with high electrical conductivity exhibits significantly reduced work function of 3.9 eV, which enables optimization of energy level alignment and enhancement of charge extraction. Moreover, the TBAB-Ti3C2Tx CBL can effectively inhibit the migration of iodine ions from perovskite layer to Ag cathode, which synergistically suppresses defect states and reduce charge recombination. Consequently, utilizing MAPbI3 perovskite without post-treatment, the TBAB-Ti3C2Tx based device exhibits a dramatically improved power conversion efficiency of 21.65% with significantly improved operational stability, which is one of the best efficiencies reported for the devices based on MAPbI3/PCBM with different CBLs. These results indicate that TBAB-Ti3C2Tx shall be a promising CBL for high-performance inverted PVSCs and inspire the further applications of quaternary ammonium functionalized MXenes in PVSCs.  相似文献   
999.
Alloying-type metal sulfides with high theoretical capacities are promising anodes for sodium-ion batteries, but suffer from sluggish sodiation kinetics and huge volume expansion. Introducing intercalative motifs into alloying-type metal sulfides is an efficient strategy to solve the above issues. Herein, robust intercalative In S motifs are grafted to high-capacity layered Bi2S3 to form a cation-disordered (BiIn)2S3, synergistically realizing high-rate and large-capacity sodium storage. The In S motif with strong bonding serves as a space-confinement unit to buffer the volume expansion, maintaining superior structural stability. Moreover, the grafted high-metallicity Indium increases the bonding covalency of Bi S, realizing controllable reconstruction of Bi S bond during cycling to effectively prevent the migration and aggregation of atomic Bi. The novel (BiIn)2S3 anode delivers a high capacity of 537 mAh g−1 at 0.4 C and a superior high-rate stability of 247 mAh g−1 at 40 C over 10000 cycles. Further in situ and ex situ characterizations reveal the in-depth reaction mechanism and the breakage and formation of reversible Bi S bonds. The proposed space confinement and bonding covalency enhancement strategy via grafting intercalative motifs can be conducive to developing novel high-rate and large-capacity anodes.  相似文献   
1000.
Herein, a facile, controllable, and versatile method is reported to prepare monodisperse yolk-shell and yolk-multishell silica nanoparticles (NPs) with mesoporous shells by a novel selective etching strategy. The mechanism of selective etching based on fluoride-silica chemistry is investigated in detail and thus provides a fundamentally novel principle for the fabrication of yolk-shell NPs. Specifically, this unprecedented and versatile synthesis strategy can be used to encapsulate essentially any silica-based, carbon-based, metal, metal oxide, or other possible NPs. Noteworthy is that most of the yolk-shell mesoporous silica (mSiO2) NPs are prepared for the first time. To demonstrate the major structural and compositional advantages of the designed yolk-shell NPs, their applications in the fields of ultralow-dielectric constant (k) materials, drug delivery systems, and catalysts were explored. In detail, the lowest k value of the prepared yolk-shellordered mesoporous silica@mSiO2/fluorinated polybenzoxazole composite films is 2.02; The obtained yolk-shell mSiO2/C@mSiO2/C NPs possess high hydrophilicity and pH-responsive sensitivity; The conversion of the catalytic reaction of the designed magnetic yolk-shell hollow Fe3O4@SiO2/Au@mSiO2 NPs at 20 min is 97% with a high conversion rate (92%) and recyclability even after 10 reuses. This innovative work lays a solid foundation for freely tailorable yolk-shell encapsulation and will greatly stimulate more efforts devoted to relevant research and development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号