首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   25篇
  国内免费   5篇
电工技术   9篇
综合类   2篇
化学工业   97篇
金属工艺   18篇
机械仪表   17篇
建筑科学   17篇
矿业工程   3篇
能源动力   19篇
轻工业   19篇
水利工程   1篇
石油天然气   6篇
无线电   44篇
一般工业技术   74篇
冶金工业   24篇
原子能技术   1篇
自动化技术   47篇
  2024年   1篇
  2023年   5篇
  2022年   9篇
  2021年   22篇
  2020年   18篇
  2019年   27篇
  2018年   21篇
  2017年   25篇
  2016年   24篇
  2015年   18篇
  2014年   23篇
  2013年   39篇
  2012年   27篇
  2011年   23篇
  2010年   20篇
  2009年   17篇
  2008年   11篇
  2007年   7篇
  2006年   7篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   8篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1993年   6篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1983年   1篇
排序方式: 共有398条查询结果,搜索用时 15 毫秒
391.
In this study, a 3D finite element model is developed to investigate the drilling process of AISI 1045 steel, and particularly, the heat and wear on the drill faces. To model drill wear, a modified Usui flank wear rate is used. Experiments are used for the verification of the simulated model and the evaluation of the surface roughness and built-up edge. A comparison of the predicted and experimental thrust forces and flank wear rates revealed that the predicted values had low errors and were in good agreement with the experimental values, which showed the utility of the developed model for further analysis. Accordingly, a heat analysis indicated that approximately half the generated heat in the cutting zone was conducted to the drill bit. Furthermore, material adhesion occurred in localized heat areas to a great extent, thus resulting in wear acceleration. A maximum flank wear rate of 0.026 1 mm/s was observed when the rotary speed and feed rate were at the lowest and highest levels, respectively. In the reverse cutting condition, a minimum flank wear rate of 0.016 8 mm/s was observed.The full text can be downloaded at https://link.springer.com/article/10.1007/s40436-018-0223-z  相似文献   
392.
This article presents the results of a series of experiments performed to assess the dynamic response of circular monolithic steel and steel–polyurea bilayer plates to impulsive loads. A convenient technique to enhance the energy absorption capability of steel plates and to improve their resistance to fracturing in dynamic events, is to spray-cast a layer of polyurea onto the plates. Since polyurea readily adheres to metallic surfaces and has a short curing time, the technique may be used to retrofit existing metallic structures to improve their blast resistance. We have examined the effectiveness of this approach, focusing on the question of the significance of the relative position of the polyurea layer with respect to the loading direction; i.e., we have explored whether the polyurea layer cast on the front face (the impulse-receiving face) or on the back face of the steel plate would provide a more effective blast mitigating composite.The experimental results suggest that the polyurea layer can have a significant effect on the response of the steel plate to dynamic impulsive loads, both in terms of failure mitigation and energy absorption, if it is deposited on the back face of the plate. And, remarkably, when polyurea is placed on the front face of the plate, it may actually enhance the destructive effect of the blast, promoting (rather than mitigating) the failure of the steel plate, depending on the interface bonding strength between the polyurea and steel layers. These experimental results are supported by our computational simulations of the entire experiment, employing realistic physics-based constitutive models for the steel (DH-36, in the present work) and polyurea [Amini MR, Amirkhizi AV, Nemat-Nasser S. Numerical modeling of response of monolithic and bilayer plates to impulsive loads. Int J Impact Eng, submitted for publication].  相似文献   
393.
During the onset of acute inflammation, rapid trafficking of leukocytes is essential to mount appropriate immune responses towards an inflammatory insult. Monocytes are especially indispensable for counteracting the inflammatory stimulus, neutralising the noxa and reconstituting tissue homeostasis. Thus, monocyte trafficking to the inflammatory sites needs to be precisely orchestrated. In this study, we identify a regulatory network driven by miR-125a that affects monocyte adhesion and chemotaxis by the direct targeting of two adhesion molecules, i.e., junction adhesion molecule A (JAM-A), junction adhesion molecule-like (JAM-L) and the chemotaxis-mediating chemokine receptor CCR2. By investigating monocytes isolated from patients undergoing cardiac surgery, we found that acute yet sterile inflammation reduces miR-125a levels, concomitantly enhancing the expression of JAM-A, JAM-L and CCR2. In contrast, TLR-4-specific stimulation with the pathogen-associated molecular pattern (PAMP) LPS, usually present within the perivascular inflamed area, resulted in dramatically induced levels of miR-125a with concomitant repression of JAM-A, JAM-L and CCR2 as early as 3.5 h. Our study identifies miR-125a as an important regulator of monocyte trafficking and shows that the phenotype of human monocytes is strongly influenced by this miRNA, depending on the type of inflammatory stimulus.  相似文献   
394.
The paper proposes a novel \begin{document}$ H_\infty$\end{document} load frequency control (LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback (DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multi-area power systems which also include uncertainties and time-varying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality (LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed (and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.  相似文献   
395.
A new wetting mechanism, termed electro-elastic wetting, and methods to exploit it for droplet manipulation are proposed and demonstrated. The system consists of a droplet of dielectric liquid, an elastic and conductive membrane as its shell, and an electrode-dielectric composite as its substrate. Activation is by an electric field applied between the membrane and the substrate. The equilibrium shape of the droplet is determined by the balance of membrane tension and electrostatic attraction. It is shown that the contact angle of the droplet is governed by a modified Young–Lipmann Equation. It is then demonstrated that it is possible to transport the droplet along a controlled direction, as well as to actively tune its shape, topography, and position by manipulating the spatial distribution of the electrical force.  相似文献   
396.
An extremely stable, energy-dense (53.6 Ah L−1, 2 m transferrable electrons), low crossover (permeability of <1 × 10−13 cm2 s−1 using Nafion 212 (Nafion is a trademark polymer from DuPont)), and potentially inexpensive anthraquinone with 2-2-propionate ether anthraquinone structure (abbreviated 2-2PEAQ) is synthesized and extensively evaluated under practically relevant conditions for use in the negolyte of an aqueous redox flow battery. 2-2PEAQ shows a high stability with a fade rate of 0.03–0.05% per day at different applied current densities, cut-off voltage windows, and concentrations (0.1 and 1.0 m ) in both a full cell paired with a ferro/ferricyanide posolyte as well as a symmetric cell. 2-2PEAQ is further shown to have extreme long-term stability, losing only ≈0.01% per day when an electrochemical rejuvenation strategy is employed. From post-mortem analysis (nuclear magnetic resonance (NMR), liquid chromatography–mass spectrometry (LC-MS), and cyclic voltammetry (CV)) two degradation mechanisms are deduced: side chain loss and anthrone formation. 2-2PEAQ with the ether linkages attached on carbons non-adjacent to the central ring is found to have three times lower fade rate compared to its isomer with ether linkages on the carbon adjacent to the central quinone ring. The present study introduces a viable negolyte candidate for grid-scale aqueous organic redox flow batteries.  相似文献   
397.
In this comment, it is shown that there are some non-negligible big mistakes in the analyses and stability proof of the proposed controller in the quoted paper, which makes the main results of this paper to be incorrect. The main unavoidable mistakes in the stability analysis of the main theorem (Theorem 1) are stated and some remarks are also mentioned to fix some of them.  相似文献   
398.
Aptamers that can recognize the spike (S) protein of SARS-CoV-2 with high affinity and specificity are useful molecules towards the development of diagnostics and therapeutics to fight COVID-19. However, this S protein is constantly mutating, producing variants of concern (VoCs) that can significantly weaken the binding by aptamers initially engineered to recognize the S protein of the wildtype virus or a specific VoC. One strategy to overcome this problem is to develop universal aptamers that are insensitive to all or most of the naturally emerging mutations in the protein. We have recently demonstrated this concept by subjecting a pool of S protein-binding DNA aptamers for one-round parallel-SELEX experiments targeting 5 different S protein variants for binding-based sequence enrichment, followed by bioinformatic analysis of the enriched pools. This effort has led to the identification of a universal aptamer that recognizes 8 different variants of the spike protein with equally excellent affinity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号