Fish oil dietary supplements (FODS) are recommended to increase the intake of polyunsaturated fatty acids (PUFAs), renowned for their beneficial effects on human health. However, FODS also contain anthropogenic contaminants, such as polychlorinated biphenyls and polybrominated diphenyl ethers (PBDEs). Sixty-nine (n=69) PUFA-enriched FODS from 37 producers were collected in 2006 and then analyzed for their levels of organobrominated compounds. Levels of the sum of tri- to hepta-BDEs (BDEs 28, 47, 49, 66, 85, 99, 100, 153, 154, and 183) were typically below 5 ng/g oil, while only a few had higher values of up to 44 ng/g oil. Several peaks in the chromatograms were identified as methoxylated PBDEs (MeO-PBDEs) and polybrominated hexahydroxanthene derivatives (PBHDs). These two groups of compounds have been suggested to be produced by marine organisms (e.g., algae and sponges) and have also been reported in marine samples, such as fish and marine mammals. Median concentrations of MeO-PBDEs and PBHDs (6.2 and 5.3 ng/g oil, respectively) were higher than median concentrations of PBDEs (0.6 ng/g oil), and their maximum values were 1670 and 200 ng/g oil, respectively. FODS are intended to be consumed on a daily basis, and the median daily intakes of MeO-PBDEs and PBHDs from FODS were 3 and 6 times higher than the median intake of PBDEs (3 ng/day). Consumption of FODS does not appear to substantially increase the total dietary intake of PBDEs since the median daily intake 相似文献
Nowadays, food and nutrition have a greater impact in people's concerns, with the awareness that nutrition have a direct impact in health and wellbeing. Probiotics have an important role in this topic and consumers are starting to really understand their potential in health, leading to an increasing interest of the companies to their commercial use in foods. However, there are several limitations to the use of probiotics in foods and beverages, being one of them their efficiency (directly associated to their survival rate) upon ingestion.
This work is focused in microencapsulation techniques that have been used to increase probiotics efficiency. More specifically, this work reviews the most recent and relevant research about the production and coating techniques of probiotic-loaded microcapsules, providing an insight in the effect of these coatings in probiotics survival during the gastrointestinal phase.
This review shows that coatings with the better performances in probiotics protection, against the harsh conditions of digestion, are chitosan, alginate, poly-L-lysine, and whey protein. Chitosan presented an interesting performance in probiotics protection being able to maintain the initial concentration of viable probiotics during a digestive test. The analyses of different works also showed that the utilization of several coatings does not guarantee a better protection in comparison with monocoated microcapsules. 相似文献
Elevated concentrations of dissolved organic matter (DOM) such as humic substances in raw water pose significant challenges during the processing of the commercial drinking water supplies. This is a relevant issue in Saxony, Central East Germany, and many other regions worldwide, where drinking water is produced from raw waters with noticeable presence of chromophoric DOM (CDOM), which is assumed to originate from forested watersheds in spring regions of the catchment area. For improved comprehension of DOM molecular composition, the seasonal and spatial variations of humic-like fluorescence and elemental formulas in the catchment area of the Muldenberg reservoir were recorded by excitation emission matrix fluorescence (EEMF) and ultrahigh-resolution mass spectrometry (FT-ICR-MS). The Spearman rank correlation was applied to link the EEMF intensities with exact molecular formulas and their corresponding relative mass peak abundances. Thereby, humic-like fluorescence could be allocated to the pool of oxygen-rich and relatively unsaturated components with stoichiometries similar to those of tannic acids, which are suspected to have a comparatively high disinfection byproduct formation potential associated with the chlorination of raw water. Analogous relationships were established for UV absorption at 254 nm (UV(254)) and dissolved organic carbon (DOC) and compared to the EEMF correlation. 相似文献
Abstract: In the present study, a total of 116 lactic acid bacteria (LAB) strains isolated from Mill flour and fermented cassava were screened for their antifungal activity. Three strains among 116 were selected for their strongest inhibitory activity against food molds. These 3 strains were Lactobacillus plantarum VE56, Weissella cibaria FMF4B16, and W. paramesenteroides LC11. The compounds responsible for the antifungal activity were investigated. The strains displayed an inhibitory activity against targeted molds at acidic pH. However, the influence of organic acids was rejected according to the calculated minimal inhibitory concentration (MIC). Antifungal compounds were investigated in the cell‐free supernatants and phenyllactic acid (PLA) was detected in different amounts with a maximal concentration for Lb. plantarum VE56 (0.56 mM). Hydroxy fatty acid, such as 2‐hydroxy‐4‐methylpentanoic acid, was also produced and involved in the inhibitory activity of Lb. plantarum VE56 and W. paramesenteroides LC11. Antifungal LAB are known to produce PLA and 3‐hydroxy fatty acids and other organic acids with antifungal activity. This short communication focuses on antifungal activity from Weissella genus. The antifungal activity was attributed to antifungal compounds identified such as PLA, 2‐hydroxy‐4‐methylpentanoic acid, and other organic acids. Nevertheless, the concentration produced in the cell‐free supernatant was too low to compare to their MIC, suggesting that the inhibitory activity was caused by a synergy of these different compounds. Practical Application: Antifungal LAB are interesting to prevent food spoilage in fermented food and prolong their shelf life. In this way, chemical preservatives could be avoided and replaced by natural preservatives. 相似文献
Colleague ratings of 29 personality traits were studied in relation to student ratings of teaching effectiveness in a sample of 46 psychology teachers. Instructors were evaluated in six different types of university courses, ranging from freshman lecture classes to graduate research seminars. Major findings were as follows: (1) Rated teaching effectiveness varied substantially across different types of courses for a given instructor; (2) teaching effectiveness in each type of course could be predicted with considerable accuracy from colleague ratings of personality; and (3) the specific personality traits contributing to effective teaching differed markedly for different course types. It was concluded that psychology instructors tend to be differentially suited to different types of courses and furthermore that the compatibility of instructors to courses is determined in part by personality characteristics. (PsycINFO Database Record (c) 2010 APA, all rights reserved) 相似文献
Security is recognized as one of the most important problems facing the wider use of hydrogen and the increased risk of accidental release into the infrastructure. Prismatic cavity design can be represented one of the best solutions for this problem. For this reason, dispersion and accumulation of hydrogen in a prismatic cavity with natural ventilation are computationally investigated by the commercial software FLUENT. 相似文献
The computational modeling and design of an actively-cooled microvascular fin specimen is presented. The design study is based on three objective functions: (i) minimizing the maximum temperature in the thermally loaded fin, (ii) optimizing the flow efficiency of the embedded microchannel, and (iii) minimizing the void volume fraction of the microvascular material. A recently introduced Interface-enriched Generalized Finite Element Method (IGFEM) is employed to evaluate the temperature field in a 2D model of the specimen, allowing for the accurate and efficient capturing of the gradient discontinuity along the fluid/solid interface without the need of meshes that conform to the geometry of the problem. Finding the optimal shape of the embedded microchannel is thus accomplished with a single non-conforming mesh for all configurations. Prior to the optimization study, the IGFEM solver is validated through comparison with infrared measurements of the thermal response of an epoxy fin with a sinusoidal microchannel. 相似文献
This paper aims at contributing to the methodology used for the numerical prediction of ignition inside a combustion chamber. For this purpose, experiments are carried out in a model combustor with improved optical access. Laser tomography and high-speed video give a first insight into the unsteady airflow and the flame structure. Laser Doppler anemometry is used to measure the gas flow velocity field, and the nonreactive two-phase flow is studied in detail using particle Doppler analysis. The velocity field of the burning spray is measured using particle image velocimetry. Ignition tests are performed to evaluate the minimum global equivalence ratio. This in-depth database is used to validate RANS simulations conducted in parallel using the ONERA computational fluid dynamics (CFD) code CEDRE. The numerical model for transient, spherical kernel ignition, proposed in previous work, has been improved and fully implemented in CEDRE. A first parametric study has been conducted on a basic configuration consisting of three validation cases: a gaseous mixture, a monodisperse spray, and a polydisperse spray. These validation cases are inspired from previous studies found in the literature and give a better understanding of the basic phenomena involved in the first stages of flame propagation. This model is then used in combination with CEDRE to estimate the ignition probability of given spark-plug positions in a more realistic configuration: the MERCATO combustor. 相似文献