Applied Intelligence - Pedestrian trajectory prediction is important for understanding human social behavior. Since the complex nature of the crowd dynamics, it remains a challenging work. Recent... 相似文献
We propose a novel online multiple object tracker taking structure information into account. State-of-the-art multi-object tracking (MOT) approaches commonly focus on discriminative appearance features, while neglect in different levels structure information and the core of data association. Addressing this, we design a new tracker fully exploiting structure information and encoding such information into the cost function of the graph matching model. Firstly, a new measurement is proposed to compare the structure similarity of two graphs whose nodes are equal. With this measurement, we define a complete matching which performs association in high efficiency. Secondly, for incomplete matching scenarios, a structure keeper net (SKnet) is designed to adaptively establish the graph for matching. Finally, we conduct extensive experiments on benchmarks including MOT2015 and MOT17. The results demonstrate the competitiveness and practicability of our tracker.
Variance is substituted by semi-variance in Markowitz's portfolio selection model. For dynamic valuation on exploration and development projects, one period portfolio selection is extended to multi-period. In this article, a class of multi-period semi-variance exploration and development portfolio model is formulated originally. Besides, a hybrid genetic algorithm, which makes use of the position displacement strategy of the particle swarm optimiser as a mutation operation, is applied to solve the multi-period semi-variance model. For this class of portfolio model, numerical results show that the mode is effective and feasible. 相似文献