首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   535173篇
  免费   6177篇
  国内免费   1870篇
电工技术   9931篇
综合类   674篇
化学工业   79638篇
金属工艺   19408篇
机械仪表   15584篇
建筑科学   13182篇
矿业工程   2308篇
能源动力   14099篇
轻工业   48118篇
水利工程   4961篇
石油天然气   8873篇
武器工业   50篇
无线电   65402篇
一般工业技术   103757篇
冶金工业   99567篇
原子能技术   11744篇
自动化技术   45924篇
  2021年   4026篇
  2019年   3861篇
  2018年   6543篇
  2017年   6477篇
  2016年   6808篇
  2015年   4635篇
  2014年   7945篇
  2013年   23997篇
  2012年   13021篇
  2011年   17895篇
  2010年   14009篇
  2009年   16212篇
  2008年   16916篇
  2007年   16866篇
  2006年   14767篇
  2005年   13671篇
  2004年   13415篇
  2003年   13069篇
  2002年   12628篇
  2001年   12896篇
  2000年   12218篇
  1999年   12757篇
  1998年   30787篇
  1997年   22201篇
  1996年   17288篇
  1995年   13350篇
  1994年   11909篇
  1993年   11750篇
  1992年   8710篇
  1991年   8428篇
  1990年   8144篇
  1989年   8029篇
  1988年   7661篇
  1987年   6657篇
  1986年   6822篇
  1985年   7757篇
  1984年   7114篇
  1983年   6664篇
  1982年   6093篇
  1981年   6271篇
  1980年   5973篇
  1979年   5762篇
  1978年   5613篇
  1977年   6511篇
  1976年   8371篇
  1975年   4809篇
  1974年   4685篇
  1973年   4707篇
  1972年   3941篇
  1971年   3491篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
In the presented work some properties of a recently developed Si3N4/SiC micro/nanocomposite have been investigated. The material was tested using a pin on disc configuration. Under unlubricated sliding conditions using Si3N4 pin at 50 % humidity, the friction coefficient was in the range of 0,6 ‐ 0,7. The reduction of humidity resulted in a lower coefficient of friction, in vacuum the coefficient of friction had a value of about 0,6. The wear resistance in vacuum was significantly lower then that in air. The wear patterns on the Si3N4+SiC disc revealed that mechanical fracture was the wear controlling mechanism. Creep tests were realized in four point bending configuration in the temperature interval 1200‐1400 °C at stresses 50,100 and 150 MPa and the minimal creep deformation rate was established for each stress level. The activation energy, established from the minimal creep deformation had a value of about 360 kJ/mol and the stress exponent values were in the range of 0.8‐1.28. From the achieved stress exponents it can be assumed that under the studied load/temperature conditions the diffusion creep was the most probable creep controlling mechanism.  相似文献   
102.
Algebraic theory of optimal filterbanks   总被引:1,自引:0,他引:1  
We introduce an optimality theory for finite impulse response (FIR) filterbanks using a general algebraic point of view. We consider an admissible set /spl Lscr/ of FIR filterbanks and use scalability as the main notion based on which performance of the elements in /spl Lscr/are compared. We show that quantification of scalability leads naturally to a partial ordering on the set /spl Lscr/. An optimal solution is, therefore, represented by the greatest element in /spl Lscr/. It turns out that a greatest element does not necessarily exist in /spl Lscr/. Hence, one has to settle with one of the maximal elements that exist in /spl Lscr/. We provide a systematic way of finding a maximal element by embedding the partial ordering at hand in a total ordering. This is done by using a special class of order-preserving functions known as Schur-convex. There is, however, a price to pay for achieving a total ordering: there are infinitely many possible choices for Schur-convex functions, and the optimal solution specified in /spl Lscr/ depends on this (subjective) choice. An interesting aspect of the presented algebraic theory is that the connection between several concepts, namely, principal component filterbanks (PCFBs), filterbanks with maximum coding gain, and filterbanks with good scalability, is clearly revealed. We show that these are simply associated with different extremal elements of the partial ordering induced on /spl Lscr/ by scalability.  相似文献   
103.
Polymer ceramic composites form a suitable material system for low temperature fabrication of embedded capacitors appropriate for the MCM-L technology. Improved electrical properties such as permittivity can be achieved by efficient filling of polymers with high dielectric constant ceramic powders such as lead magnesium niobate-lead titanate (PMN-PT) and barium titanate (BT). Photodefinable epoxies as the matrix polymer allow fine feature definition of the capacitor elements by conventional lithography techniques. The optimum weight percent of dispersant is tuned by monitoring the viscosity of the suspension. The dispersion mechanism (steric and electrostatic contribution) in a slightly polar solvent such as propylene glycol methyl ether acetate (PGMEA) is investigated from electrophoretic measurements. A high positive zeta potential is observed in the suspension, which suggests a strong contribution of electrostatic stabilization. By optimizing the particle packing using a bimodal distribution and modified processing methodology, a dielectric constant greater than 135 was achieved in PMN-PT/epoxy system. Suspensions are made with the lowest PGMEA content to ensure the efficiency of the dispersion and efficient particle packing in the dried film. Improved colloidal processing of nanoparticle-filled epoxy is a promising method to obtain ultra-thin capacitor films (<2/spl mu/m) with high capacitance density and improved yield. Capacitance of 35 nF/cm/sup 2/ was achieved with the thinnest films (2.5-3.0 /spl mu/m).  相似文献   
104.
A method is proposed to calculate the solubility of solid high-molecular-weight substances in organic supercritical fluids on the basis of the Soave and Peng–Robinson equations of state. The mixing rules are modified taking into account the Gibbs energy of mixing calculated for a particular equation of state. The accuracy of calculation of the concentration of the substance dissolved in supercritical fluids is analyzed for different mixing rules. The modeling results are compared with observed data.  相似文献   
105.
An accurate printer model that is efficient enough to be used by halftoning algorithms is proposed. The proposed signal processing model (SPM) utilizes a physical model to train adaptive linear combiners (ALCs), after which the average exposure of each subpixel for any input pattern can be calculated using the optimized weight vector. The SPM can be used to model multi-level halftoning and resolution enhancement, as well as traditional halftoning. The SPM is comprised of a single ALC layer followed by a peak-to-average ratio (PAR) correction layer, which serves to produce a PAR of less than 1.5 in the modeled exposure. The PCN (PAR correction network) employs one ALC/pixel and exploits the physics governing the characteristics of exposure in small regions. A relatively small number of training patterns suffices to train the SPM.  相似文献   
106.
The synthesis of powders with controlled shape and narrow particle size distributions is still a major challenge for many industries. A continuous Segmented Flow Tubular Reactor (SFTR) has been developed to overcome homogeneity and scale‐up problems encountered when using batch reactors. Supersaturation is created by mixing the co‐reactants in a micromixer inducing precipitation; the suspension is then segmented into identical micro‐volumes by a non‐miscible fluid and sent through a tube. These micro‐volumes are more homogeneous when compared to large batch reactors leading to narrower size distributions, better particle morphology, polymorph selectivity and stoichiometry. All these features have been demonstrated on single tube SFTR for different chemical systems. To increase productivity for commercial application the SFTR is being “scaled‐out” by multiplying the number of tubes running in parallel instead of scaling‐up by increasing their size. The versatility of the multi‐tube unit will allow changes in type of precipitate with a minimum of new investment as new chemistry can be researched, developed and optimised in a single tube SFTR and then transferred to the multi‐tube unit for powder production.  相似文献   
107.
The authors have investigated the reliability performance of G-band (183 GHz) monolithic microwave integrated circuit (MMIC) amplifiers fabricated using 0.07-/spl mu/m T-gate InGaAs-InAlAs-InP HEMTs with pseudomorphic In/sub 0.75/Ga/sub 0.25/As channel on 3-in wafers. Life test was performed at two temperatures (T/sub 1/ = 200 /spl deg/C and T/sub 2/ = 215 /spl deg/C), and the amplifiers were stressed at V/sub ds/ of 1 V and I/sub ds/ of 250 mA/mm in a N/sub 2/ ambient. The activation energy is as high as 1.7 eV, achieving a projected median-time-to-failure (MTTF) /spl ap/ 2 /spl times/ 10/sup 6/ h at a junction temperature of 125 /spl deg/C. MTTF was determined by 2-temperature constant current stress using /spl Delta/G/sub mp/ = -20% as the failure criteria. The difference of reliability performance between 0.07-/spl mu/m InGaAs-InAlAs-InP HEMT MMICs with pseudomorphic In/sub 0.75/Ga/sub 0.25/As channel and 0.1-/spl mu/m InGaAs-InAlAs-InP HEMT MMICs with In/sub 0.6/Ga/sub 0.4/As channel is also discussed. The achieved high-reliability result demonstrates a robust 0.07-/spl mu/m pseudomorphic InGaAs-InAlAs-InP HEMT MMICs production technology for G-band applications.  相似文献   
108.
The aim of this work was to establish the important parameters that control the hot compaction behaviour of woven oriented polypropylene. Five commercial woven cloths, based on four different polypropylene polymers, were selected so that the perceived important variables could be studied. These include the mechanical properties of the original oriented tapes or fibres, the geometry of the oriented reinforcement (fibres or tapes), the mechanical properties of the base polymer (which are crucially dependant on the molecular weight and morphology), and the weave style. The five cloths were chosen so as to explore the boundaries of these various parameters, i.e. low and high molecular weight: circular or rectangular reinforcement (fibres or tapes): low or high tape initial orientation: coarse or fine weave.A vital aspect of this study was the realisation that hot compacted polypropylene could be envisaged as a composite, comprising an oriented ‘reinforcement’ bound together by a matrix phase, formed by melting and recrystallisation of the original oriented material. We have established the crucial importance of the properties of the melted and recrystallised matrix phase, especially the level of ductility, in controlling the properties of the hot compacted composite.  相似文献   
109.
The coefficients of thermopower and electrical and thermal conductivity in the PbTe0.8Se0.1 S 0.1 solid solution with electron concentration (4.6–54) × 1018 cm?3 are studied in the range of 85–300 K (and in some cases up to 700 K). The temperature dependences of electrical and thermal conductivity indicate that the low-temperature electron and phonon scattering initiated by the off-center impurity of sulfur exists. The temperature dependences of the electronic and lattice components of thermal conductivity are calculated in the approximation of a parabolic spectrum and electron scattering by acoustic phonons and neutral substitutional impurities. The lattice thermal conductivity is found to have a feature in the form of a shallow minimum in the range of 85–250 K. A similar feature, while not so clearly pronounced, is found to exist also in Pb1?x SnxTe1?x Sex alloys (x≥0.15) with an off-center tin impurity. An analysis of the possible origins of this effect suggests that, at low temperatures, the Lorentz numbers L of the materials under study are smaller than the L0 numbers employed which correspond to the above scattering mechanisms. The cause of the decrease in L is related to electron scattering at two-level systems, a mechanism whose effect grows with increasing electron energy. An analysis of experimental data obtained at high temperatures, as well as on undoped samples with the lowest possible carrier concentrations, yields the values of L for samples with different electron densities. The minimum value L/L0 = 0.75 is obtained for a lightly doped sample at ~130 K.  相似文献   
110.
The emerging software defined radio technologies will be an enabler for a new generation of dynamic wireless systems. It will also open up the possibility of allocating frequencies in a, more dynamic way than today. From an intersystem-interference point of view, this can cause unforeseen problems to occur due to the increased complexity in such applications. In such applications, a measure indicating whether or not a frequency band is possible to use from an electromagnetic interference point of view, must be found. A simple approach is to use the measured total average interference power within the receiver band. Since the interference impact on modern digital communication systems from an interference signal does not only depend on the power but also on the actual waveform of the interference signal, some kind of quality measure of the average-power approach would be convenient to use. In this paper, we introduce a simple quality measure of the average-power approach so that a rough adjustment for the interference-waveform properties can be done.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号