首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   697篇
  免费   24篇
  国内免费   22篇
电工技术   8篇
综合类   5篇
化学工业   162篇
金属工艺   18篇
机械仪表   21篇
建筑科学   8篇
能源动力   56篇
轻工业   50篇
水利工程   3篇
无线电   102篇
一般工业技术   172篇
冶金工业   29篇
原子能技术   2篇
自动化技术   107篇
  2024年   4篇
  2023年   15篇
  2022年   33篇
  2021年   48篇
  2020年   36篇
  2019年   39篇
  2018年   46篇
  2017年   34篇
  2016年   40篇
  2015年   26篇
  2014年   25篇
  2013年   82篇
  2012年   42篇
  2011年   62篇
  2010年   44篇
  2009年   18篇
  2008年   28篇
  2007年   21篇
  2006年   22篇
  2005年   15篇
  2004年   10篇
  2003年   6篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1991年   2篇
  1989年   1篇
  1988年   4篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   3篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1974年   2篇
排序方式: 共有743条查询结果,搜索用时 15 毫秒
51.
This paper presents effect of the weather impairments on a high altitude platform (HAP) broadband wireless communication system. It is shown that attenuation due to oxygen, water vapor, fog, cloud, and rain has significant effect on a radio link which is operating in a millimeter frequency range. Channel capacity is calculated for different seasons using Shannon’s channel capacity theorem. The location of HAP is taken to be Delhi (India). Further, it is considered that a user and the HAP platform are stationary.  相似文献   
52.
Accurately predicting the heat transfer characteristics of coolants used in thermal management of energy systems like heat exchangers, power electronics, and heating, ventilation, and air conditioning is indispensable in maintaining its operating conditions within safety limits. Apart from safety, factors such as power consumption and operating cost are the most important constraints to be considered in designing an energy-efficient and cost-effective cooling solution. In this study, the experimental data available from previous research on the use of functionalized graphene-based nanofluids in compact heat exchangers such as the automotive radiator is used to optimize the heat transfer performance parameters like Nusselt number of the nanofluid, the friction factor, and effectiveness of the heat exchanger. A supervised machine learning technique like the artificial neural network is used to obtain the objective functions of the response variables in terms of input features such as Reynolds number, Prandtl number, the volume concentration of nanoparticles in the base fluid, number of transfer units, heat capacity, the density of nanofluid, pressure drop and velocity. On the current dataset, it is found that by using the Bayesian regularization training algorithm and tangent sigmoidal activation function in the neural network, the best accuracies in the prediction can be achieved. Well-known nature-inspired optimization algorithms like genetic algorithms and simulated annealing are used in optimizing the above-mentioned response variables. Both algorithms converged to the same values of the objective functions. The optimum values of Nusselt number, effectiveness, and friction factor are 105.65, 0.506, and 0.0038, respectively, for the given composition of the nanofluid and radiator configuration.  相似文献   
53.
An analysis is built up for the exploration of radiative heat transport on the magnetohydrodynamic flow of rotating fluid over a vertical sheet. The inclusion of thermal radiation in conjunction with the reacting species enhances the energy as well as the solutal profiles respectively. In an advance, external heat source and applied magnetic field effects are considered for further improvement. As the magnetic Reynolds number is low, the influence of the induced magnetic field is neglected. The transformation of governing nonlinear partial differential equations into coupled nonlinear ordinary differential equations is attained with a proper supposition of similarity variables. Moreover, the solution of these transformed equations is scheduled using the “Runge–Kutta fourth-order” method numerically in association with the “shooting technique.” The simulation or various illustrating parameters affecting the flow phenomena are obtained and displayed through graphs and for numerical validation with earlier published work shows the convergence process of the methodology applied. The main findings of the study are; the Dufour number is favorable to enhance the fluid temperature throughout the domain and the destructive chemical reaction also encourages the solutal profile significantly.  相似文献   
54.
Abstract

In the present study, thermoelastic analysis of laminated composite and sandwich shells (cylindrical/spherical) is presented using fifth-order shear and normal deformation theory. The significant characteristic of the present theory is that it includes the effects of both transverse shear and normal deformations. The mathematical formulation uses the principle of virtual work to derive the variationally consistent governing equations and traction free boundary conditions. To obtain the static solution, these governing equations are solved by employing Navier’s solution technique. The shell is subjected to a mechanical/thermal load sinusoidally distributed over the top surface of the shell. The thermal load linearly varies across the thickness of the shell. The present results are compared with other higher-order models and 3D elasticity solution wherever possible. Thermal stresses presented in this study will act as a benchmark for the future work.  相似文献   
55.
The demand for better structural performance in joining of components for road vehicles prompts the implementation of aluminum alloy friction stir welding technology in the automotive industry. The aim of current study is the creation of a 3-D finite element (FE) friction thermal model and stir welding (FSW) process of dissimilar aluminum alloy and for the estimation of crash worthiness performance of FSW fabricated shock absorber assembly. Thermo mechanical simulations and analysis are performed to understand the thermal behavior in the FSW weld zones. The developed models are correlated against published experimental results in terms of temperature profile of the weld zone. The developed models are then implemented for fabricating vehicle bumper parts to illustrate the performance of FSW welded components during an impact. Customary sled testing for low-speed guard necessities is performed utilizing a grating blend welded test apparatus at Wichita State University (WSU) at the National Institute for Aviation Research (NIAR). A few guard congregations are then appended to the test installation utilizing FSW and conventional Gas bend GMAW welding strategies. Numerical models are likewise created where limited component investigation is utilized to contrast the anticipated harm and the real harm maintained by both of the FSW and GMAW manufactured guards. During the research, a new FSW weld mold is created that allows for a better representation of the desired progressive crack propagation. The FSW fabricated bumper based on the Johnson-Cook failure model yields better failure prediction and is in good agreement to the test. The results from this study provide a guideline for an accurate finite element modeling of a FSW fabricated components and their application in the crashworthiness of such structural components.  相似文献   
56.
The effect of physical compatibilization on the deformation and coalescence of droplets in immiscible polymer blends is discussed. Evidence is provided for the existence of concentration gradients in block copolymers along the interface during deformation. This causes complex changes in droplet shapes during deformation and relaxation. These concentration gradients also result in Marangoni stresses, which stabilize the droplets against deformation and breakup. Coalescence experiments have been performed, varying both the compatibilizer concentration and the shear rate. Existing coalescence models have been evaluated. An empirical extension of Chesters' partially mobile interface model is presented, that treats the effects of Marangoni stresses on the coalescence process as a higher effective viscosity ratio.  相似文献   
57.

镁/镁合金焊接与加工的最新进展与未来展望

Sachin Kumar,武传松

(山东大学 材料科学与工程学院,济南 250061)

中文说明:

该文非常详细地综述了镁及镁合金的生产、加工及焊接的研究现状。尤其是在镁合金焊接部分,作者比较详细地阐述了熔化焊、激光焊、固相焊及钎焊等方法在镁合金焊接中的研究现状、存在问题与发展动向。该文对于镁合金焊接研究人员具有重要的参考价值。

关键词:镁;镁合金;加工;焊接;连接;最新进展

  相似文献   
58.
An electrically switchable graphene terahertz (THz) modulator with a tunable-by-design optical bandwidth is presented and it is exploited to compensate the cavity dispersion of a quantum cascade laser (QCL). Electrostatic gating is achieved by a metal grating used as a gate electrode, with an HfO2/AlOx gate dielectric on top. This is patterned on a polyimide layer, which acts as a quarter wave resonance cavity, coupled with an Au reflector underneath. The authors achieve 90% modulation depth of the intensity, combined with a 20 kHz electrical bandwidth in the 1.9–2.7 THz range. The modulator is then integrated with a multimode THz QCL. By adjusting the modulator operational bandwidth, the authors demonstrate that the graphene modulator can partially compensate the QCL cavity dispersion, resulting in an integrated laser behaving as a stable frequency comb over 35% of the operational range, with 98 equidistant optical modes and a spectral coverage ~1.2 THz. This paves the way for applications in the terahertz, such as tunable transformation-optics devices, active photonic components, adaptive and quantum optics, and metrological tools for spectroscopy at THz frequencies.  相似文献   
59.
Artificial Intelligence Review - Data are being continuously generated from various operational steps in the oil and gas industry. The recordings of these data and their proper utilization have...  相似文献   
60.
The demand for miniaturized products having a glossy surface or nano-level surface is increasing exponentially in automobile, aerospace, biomedical, and semiconductor industries. The mirror-like surface finish has generated a need to develop advanced machining processes. The addition of powder particle into electric discharge machining (EDM) oil is considered a promising technique to achieve surface integrity at the miniaturization level. In this research, the Al–10%SiCp metal matrix composite (MMC) has been machined after mixing the appropriate amount of multiwalled carbon nanotubes (MWCNTs) into the EDM dielectric fluid. An advanced experimental setup has been designed and fabricated in the laboratory for conducting the experiments. This proposed technology is called nano powder mixed electric discharge machining (NPMEDM). The input parameters of NPMEDM are also optimized using central composite rotatable design (CCRD) based on response surface methodology (RSM) in order to obtain the best surface finish and material removal rate (MRR). The MRR has been increased by 38.22% and surface finish has been improved by 46.06% after mixing the MWCNTs into the EDM dielectric fluid. The results indicate that the combination of parameters A5, B5, C5, and D5 might have produced maximum MRR, whereas A1, B1, C1, and D3 have produced minimum surface roughness (SR).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号