首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   43篇
  国内免费   7篇
电工技术   11篇
综合类   2篇
化学工业   146篇
金属工艺   11篇
机械仪表   24篇
建筑科学   21篇
矿业工程   2篇
能源动力   34篇
轻工业   47篇
水利工程   18篇
石油天然气   27篇
无线电   48篇
一般工业技术   70篇
冶金工业   9篇
自动化技术   118篇
  2024年   3篇
  2023年   8篇
  2022年   19篇
  2021年   44篇
  2020年   27篇
  2019年   41篇
  2018年   60篇
  2017年   28篇
  2016年   53篇
  2015年   25篇
  2014年   30篇
  2013年   55篇
  2012年   40篇
  2011年   36篇
  2010年   24篇
  2009年   22篇
  2008年   16篇
  2007年   13篇
  2006年   10篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   3篇
  2000年   1篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1991年   1篇
  1989年   2篇
  1986年   1篇
排序方式: 共有588条查询结果,搜索用时 15 毫秒
191.
To improve buckling stability and to prevent early elastic buckling of infill plates, vertical and horizontal plate stiffeners are designed for steel plate shear wall (SPSW) systems. Furthermore, effective design of stiffeners for SPSW systems results in improved structural behavior, such as increase of stiffness, capacity and energy absorption. In this paper, the effect of stiffeners is studied on SPSW structural behavior and consequently a rational method is proposed to determine the minimum required moment of inertia for stiffeners resulting in local buckling mode of the infill plate. The proposed requirement is then compared to results obtained from tests previously conducted, as well as those gained from finite element (FE) analyses performed for this study. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
192.
Natural gas commonly contains water as a contaminant that can condense to water or form gas hydrates, which causes a range of problems during gas production, transportation, and processing. Therefore, the removal of gas moisture is of great importance. A common and popular method for removing water contamination from natural gas is using solid dehydrators. Calcium chloride is a nonregenerative desiccant to dehydrate natural gas. With continual water adsorption, CaCl2 changes to consecutively higher states of hydration, finally producing a CaCl2 brine solution. This method does not require heating or moving parts. In addition, it does not react with H2S or CO2. These features make this method a popular one for drying natural gas. Nevertheless, precise and simple methods are needed to predict the water content of natural gas dried by calcium chloride dehydrator units. In this study, an intelligent method, called the radial basis function neural network, was incorporated to predict the gas moisture dehydrated by calcium chloride in dehydration units. Modeling was performed under different conditions of a fresh recharge and before recharging. The overall correlation factor of 0.9999 for both the fresh charge and before charging conditions showed that the outputs of the proposed models were in agreement with the experimental data. In addition, the developed models were compared with the previously proposed intelligent models and classic correlations. The comparison showed that the developed model is superior to the previously proposed models and correlations regarding the accuracy of prediction.  相似文献   
193.
194.
195.
Flood spreading (FS) is one of the suitable methods for flood management and water harvesting that increases the groundwater recharge, makes soil more fertile and increases nutrients in soil. It is also a method for reusing sediment, which is usually wasted. The purpose of this paper is to investigate the impact of flood spreading on physical and chemical soil properties (soil texture, infiltration rate, pH, EC, Na, P, K, Ca, Mg, Cl, HCO3, and SO4). It is examined that the soil properties change in the flood spreading projection area (FSP). The physico-chemical properties of soil and infiltration rate were measured in different soil depths at both flood spreading and control area. For the 20 cm of top soil, the amount of clay increased after the flood spreading implementation especially in the first and second dikes. Increasing clay was accompanied by decreasing soil infiltration and sand percentage. The mean differences of the clay, sand and infiltration rate between FSP and the control area were statistically significant (P < 0.01). A significant difference was not observed in 20–30 cm of the depth. Soil pH, Mg, HCO3, Cl and SO4 in different soil layers did not show any significant difference between the control and FSP. Soil EC in 0–20 cm depth of FSP and control area was showed a significant difference (P < 0.05) but no significant differences were found in deeper layers (P < 0.05). K, Na and Ca were remarkably different between 0 and 10 cm depths (P < 0.05) whereas no significant differences were found in deeper layers (P < 0.05). Comparison of the physico-chemical properties and infiltration rates between the dikes in the FSP shows that there are the significant differences between the medians of dike 1 with dikes 2, 3, 4 and 5, but the differences were not observed between dikes 3, 4 and 5. Our results show that the flood spreading operation can be influenced by the area that is under this operation. This study allowed us to investigate the mechanisms that regulate the infiltration rate and chemical soil properties throughout a seasonally flooded area.  相似文献   
196.
In order to better understand the influence of the shape of solid particles on the stability of liquid marbles, we investigated liquid marbles stabilized by hydrophobized calcium carbonate particles with spherical and rod-shaped morphologies. Static properties, such as the effective surface tension, and the dynamic behavior i.e. the compression-decompression features for several cycles of the liquid marbles were investigated. Liquid marbles stabilized with spherical CaCO3 particles show an elastic response to mechanical deformation almost up to collapse. In contrast, liquid marbles prepared with rod-like particles exhibit a more plastic response to compression. It is concluded that the main differences in behavior of the prepared liquid marbles arise from how the solid particles can arrange/orient at the air/water interface.  相似文献   
197.
This paper presents the analytical solution of the crack tip fields as well as the crack parameters in an infinitely large composite plate with a central crack subjected to pure shear loading. To this end, the complex variable method is employed to formulate an asymptotic solution for the crack tip fields in an anisotropic plane. Using a stress‐based definition of the crack tip modes of loading, only the mode II crack parameters are found to be non‐zero under pure shear load. Special focus is given to the determination of the higher order parameters of the crack tip asymptotic field, particularly the first non‐singular term, ie, the T‐stress. Unlike the isotropic materials, in which the T‐stress is zero under pure shear, it is found that the T‐stress is non‐zero for the case of anisotropic materials, being the only material‐dependent crack tip stress parameter. The veracity of our exact crack tip fields is assessed and verified through a comparison made with respect to the finite element (FE) solution. Finally, we demonstrate the significance of the T‐stress on stresses near the crack tip in composite plates under pure shear loads.  相似文献   
198.
In addition to the cutting conditions, the surface quality is also affected significantly by a worn tool in machining processes. Identification of the desirable tool life so that the surface quality is maintained within a desirable level is an essential task, especially in the machining of hard materials. In this paper, an optimal tool life and surface quality were identified in the turning operation of Inconel 718 Superalloy by means of experimental investigations and intelligent methods. First, the effect of machining time (MT) at the different cutting parameters was widely investigated on the surface roughness using the neural network model. Then, the modified Non-dominated Sorting Genetic Algorithm (NSGA) was implemented to optimize tool life and surface roughness. For this purpose, a new approach was implemented and the MT was taken into account as the input and output parameters during the optimization. Finally, the results of optimization were classified and the suitable states of the machining outputs were found. The results indicate that the implemented strategy in this paper provides an efficient approach to determine a desirable criterion for tool life estimation in machining processes.  相似文献   
199.
In this paper, a comprehensive study is performed in order to demonstrate the effect of the flow and particle temperature on cyclone performance. Three main characteristics of the low-mass-loading gas-solid cyclone separators, including: pressure drop, particle separation efficiency and natural vortex length are investigated. Eulerian-Lagrangian approach is employed to solve the unsteady Navier-Stokes and energy equations to model the flow of particles. Because of the strong swirling flow in cyclone, Reynolds stress transport model (RSTM) is used to calculate the Reynolds stresses. Numerical simulation is accomplished at a temperature range of 293–700 K and four inlet velocities. Also, a comparison is conducted between two Stairmand high efficiency cyclones with the same dimensions, one with single inlet and the other with double inlets to declare the effect of the second inlet on cyclone performance. The analysis of results shows that the swirling flow becomes weaker for higher temperature cases and thus, flow pressure drop and particle separation efficiency is noticeably decreased. Increasing in temperature causes decrease in natural vortex length. Also, study of natural vortex length is performed for the studied range of temperature.  相似文献   
200.
In this study, gold nanoshell (GNS) were synthesised utilising the Halas method. The obtained nanoparticles (NPs) were characterised by Fourier‐transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis spectroscopy and dynamic light scattering. FTIR spectra demonstrated the successful functionalisation of silica NP with 3‐aminopropyl trimethoxysilane. SEM and TEM images showed the morphology and diameter of the synthesised silica NPs (137 ± 26 nm) and GNS. UV–Vis spectrum illustrated the maximum absorbance of the resultant GNS and their average hydrodynamic diameter was 159 nm. For in vitro study, HCT‐116 cells were exposed to gold nanoshells and intense pulsed light in different experiment groups. The results showed that exposing the cells to nanoshells and 30 s irradiation would efficiently decrease the viability percentage of the cells to about 30% compared with the control. A continued exposure of 4 min decreased the viability of the cancer cells to 20%. The results demonstrated that photothermal therapy would be promising in treatment of colon cancer cells utilising gold nanoshells.Inspec keywords: gold, silicon compounds, nanomedicine, plasmonics, radiation therapy, bio‐optics, cancer, cellular biophysics, nanoparticles, Fourier transform spectra, infrared spectra, scanning electron microscopy, transmission electron microscopy, ultraviolet spectra, visible spectraOther keywords: plasmonic photothermal therapy, colon cancer cells, gold‐silica nanoshells, GNS, Halas method, Fourier transform infrared spectroscopy, FTIR, scanning electron microscopy, SEM, transmission electron microscopy, TEM, UV‐vis spectroscopy, dynamic light scattering, FTIR spectra, 3‐aminopropyl trimethoxysilane, morphology, in vitro study, HCT‐116 cells, cell viability, nanoparticles, time 30 s, time 4 min, Au  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号