Nonionic surfactants are highly stable and cost-effective and receiving acceptance for applications in many diverse fields including drug delivery, due to their distinctive properties. Here, we report on the synthesis and characterization of sulfanilamide-based nonionic surfactants for nanoscale vesicular drug loading applications. Nonionic surfactants were synthesized through alkylation of sulfanilamide with alkyl halides that possessed diverse degrees of lipophilicity. They were explored for their nanovesicular drug loading with Cefixime as a hydrophobic model drug. Drug-loaded nanovesicles were characterized for surface morphologies, size, size distribution, surface charge, and drug loading efficiency using atomic force microscopy (AFM), dynamic light scattering (DLS), and UV–visible spectrophotometry. All of the synthesized nonionic surfactants revealed their CMC values in 0.055–0.035 mM range depending upon the lipophilic chain length of surfactants. They caused a decreased hemoglobin release and low toxicity against cell culture. They self-assembled and loaded an increased amount of drug in the form of nanorange spherical shape niosomal vesicles. Results of the current study verify these synthesized nonionic surfactants are hemocompatible, nontoxic, and capable of self-assembling into nanorange niosomal vesicles. These niosomal vesicles can be suggested as safe and highly efficient nanocarriers for hydrophobic drug loading and delivery. 相似文献
The study of heat exchanger fouling using supersaturated calcium sulphate solutions has been widely reported. In this study fouling was investigated in a larger-scale heat exchange apparatus using stainless-steel pipe, and data were obtained at different flow rates, concentrations and temperature differences. The deposits were examined using a scanning electron microscope, X-ray diffraction and conventional photography. In a novel approach, wood pulp fibers were added to the fouling solution at various concentrations to mitigate fouling. Heat transfer enhancement above the solution-alone was observed initially and the onset of fouling delayed. When fouling eventually developed the final asymptotic level was lower than the fiber-free case for the experimental conditions specified. At a fiber concentration of 0.15% heat transfer augmentation occurred for 11 days. However, at 0.25% fiber concentration, heat transfer augmentation (no fouling) was sustained over the experimental duration of 45 days. It can be concluded that the service-life cycle of a heat exchanger can be prolonged with the addition of asymmetric, flexible, natural fibers. In this work it is argued that fibers modify the onset of deposition by boundary layer scavenging, and interact with turbulent eddies to reduce the rate of mass transfer of the foulant to the heated surface. When scale forms, the crystalline structure of the scale is interrupted by the fibers, which appear to roughen the heat transfer surface initially and increase the heat transfer coefficient. However, the scale deposit continues to build up very slowly, causing the thermal resistance to eventually override the turbulence augmented heat transfer effect of the fibers. 相似文献
Pure and cadmium (Cd) doped hydroxyapatites (HA, Ca10(PO4)6(OH)2) were synthesized by a precipitation method from aqueous solutions of Ca(NO3)24·H2O for the former and Cd(NO3)24·H2O for the latter, by using (NH4)2HPO4 as the phosphate source, while pH was kept in the range of 11–12. The effect of incorporation of Cd2+ ions into the structure of HA was investigated after the air sintering at 1100 °C for 1 h. The results indicate that Cd2+ addition into HA yields nearly fully densified products with respect to pure stoichiometric HA. The XRD patterns showed that Cd doping increases the crystallinity of HA. The 2, 4.4, and 8.8 mol% Cd doped HAs had calcium oxide (CaO) impurity phase in their lattice. The CaO phase in the HA structure gradually disappeared with increasing Cd amount, and was replaced with cadmium oxide (CdO) in the CdHA doped with 11 mol% Cd. Cd2+ ion incorporation decreased the a- and c-axis lattice constants and unit cell volume of HA. 相似文献
[NiCl2(C14H12N2)(H2O)] complex has been synthesized from nickel chloride hexahydrate (NiCl2·6H2O) and 2,9-dimethyl-1,10-phenanthroline (dmphen) as N,N-bidentate ligand. The synthesized complex was characterized by elemental analysis, infrared (IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy and differential thermal/thermogravimetric analysis (TG/DTA). The complex was further confirmed by single crystal X-ray diffraction (XRD) as triclinic with space group P-1. The desired complex, subjected to thermal decomposition at low temperature of 400 ºC in an open atmosphere, revealed a novel and facile synthesis of pure NiO nanoparticles with uniform spherical particle; the structure of the NiO nanoparticles product was elucidated on the basis of Fourier transform infrared (FT-IR), UV-vis spectroscopy, TG/DTA, XRD, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDXS) and transmission electron microscopy (TEM). 相似文献
The Food Frequency Questionnaire (FFQ) is one of the most commonly used tools in epidemiologic studies to assess long-term
nutritional exposure. The purpose of this study is to describe the development of a culture specific FFQ for Arab populations
in the United Arab Emirates (UAE) and Kuwait. 相似文献
The increasing use of heavy metals, dyes, and other metallic or chemical elements causes crucial environmental pollution. Sewage that contains these heavy metals and dyes is discharged into the atmosphere and goes directly into the food cycle, causing cancerous diseases and health deterioration in living organisms. The supreme concern of today’s research is to treat wastewater and effectively remove the hazardous dye molecules from aqueous media and other environmental matrices. Nowadays, technologies are applied to rectify organic and inorganic pollutants from sewage. Among them, adsorption is a fascinating way because it is environmentally friendly, feasible, and economical biomaterials. Chitosan (CS) as bio-sorbent is endowed with valuable characteristics, such as biodegradability, biocompatibility, high reactivity, low-cost, and functional groups (–OH and NH2) on its surface. CS is used for many applications, either as a single component or composite form. The use of CS as bio-adsorbents is beneficial over regular adsorbents. Chitosan-based hydrogel is one of the very important bio-adsorbents. All these bio-adsorbents are highly used to eradicate toxic dyes, digest harmful industrial sewage, and eliminate pesticides, climatic hazardous waste, and contaminated materials from the environment.
The objective of the study is to investigate the influence of heat treatment on shrinkage, density, surface roughness, water absorption, diffusion coefficient, swelling and shear strength of eastern redcedar (Juniperus virginiana L.) samples. The anatomical structures of samples are also observed by scanning electron microscope (SEM). Specimens are exposed to temperature levels of 120 °C, 160 °C and 190 °C for time spans of 2 and 8 h. Based on the results of this study, dimensional stability in the form of shrinkage of the samples is improved by 2.68%, 1.40% and 1.49% for tangential, longitudinal and radial grain orientations as function of heat treatment, respectively. Heat treatment also enhances surface quality of the samples based on numerical values determined from stylus type of equipment. Water absorption, swelling values and diffusion coefficient of the samples are also reduced with heat treatment. Samples exposed to heat treatment have lower shear strength values, ranging from 25.12% to 52.67%, than those of control samples. It appears that all properties evaluated in this work are affected more pronouncedly as temperature and exposure time is increased. 相似文献
This paper investigates oil–water two‐phase flows in microchannels of 793 and 667 µm hydraulic diameters made of quartz and glass, respectively. By injecting one fluid at a constant flow rate and the second at variable flow rate, different flow patterns were identified and mapped and the corresponding two‐phase pressure drops were measured. Measurements of the pressure drops were interpreted using the homogeneous and Lockhart–Martinelli models developed for two‐phase flows in pipes. The results show similarity to both liquid–liquid flow in pipes and to gas–liquid flow in microchannels. We find a strong dependence of pressure drop on flow rates, microchannel material, and the first fluid injected into the microchannel. 相似文献
In ultrasonic testing of welds, detection of small flaws is often difficult by the superimposed noise due to the grain structure of the material. The scattering of ultrasonic waves from grain boundaries can interfere and introduce disturbance in the received signal that can sometimes mask indications due to a small but potentially dangerous defect. However, to enhance the flaw characterization, methods based on ‘thresholding’ have given good results only when the signal to noise ratio is high, and since bandwidth of the reflected signal as well as its principal frequency is subject to wide variation, it is impossible to create an appropriate band pass filter. So linear filtering does not provide good results, because both, the structure noise and flaw signal concentrate energy in the same frequency band. Non-linear filtering can be used to reduce or suppress the noise from ultrasonic signals. One way out is to use the time frequency transforms, the method is based on the wavelet packet decomposition. The Debauchee function of order 8 [Daubauchee I. Orthogonal bases of capacity wavelets. Commun Pure Appl Math 1998;41] has been chosen as the analyzing function, and each measured ultrasonic signal is analyzed by a filter bank through only three levels of decomposition. This work demonstrates that the following analysis is very efficient with respect to signal recovery from noisy data. The experimental results have shown that the proposed method has excellent performances on SNR enhancements. 相似文献
Standardization of Fourier transform infrared (FTIR) fingerprint region for paints and assessment on the reproducibility using different spectrophotometers were investigated. While selective fingerprint regions may be confusing for technicians/analysts who are non-chemists, we attempt to generalize these regions (e.g., 1300–1000 cm−1 for Epoxy part A and 1400–1000 cm−1 for Epoxy part B) by choosing a universal region (2000–900 cm−1) that works for different paints. Comparison result using a paired student t-test shows that the degree of similarity (r) values from the studied regions are not statistically different. The paint fails the screening analysis occasionally on-site when analyzed using handheld FTIR due to the higher level of noise that gives low r values (r < 0.900 ± 0.002). The same samples were analyzed using a benchtop FTIR and the r values are above 0.900 ± 0.002. While the screening may lead to a false rejection of the sample on-site, there could be occurrence of false acceptance. The on-site screening of EPZ part A with different formulations, for instance, shows that the r values over the entire IR spectrum are above 0.900 ± 0.002 when analyzed using handheld FTIR. After the samples were analyzed using the benchtop, the r values fall below 0.900 ± 0.002. 相似文献