首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2585篇
  免费   237篇
  国内免费   6篇
电工技术   46篇
化学工业   799篇
金属工艺   79篇
机械仪表   162篇
建筑科学   18篇
能源动力   113篇
轻工业   165篇
水利工程   8篇
石油天然气   1篇
无线电   479篇
一般工业技术   580篇
冶金工业   91篇
原子能技术   80篇
自动化技术   207篇
  2024年   4篇
  2023年   44篇
  2022年   70篇
  2021年   87篇
  2020年   68篇
  2019年   91篇
  2018年   88篇
  2017年   92篇
  2016年   115篇
  2015年   91篇
  2014年   121篇
  2013年   189篇
  2012年   168篇
  2011年   210篇
  2010年   141篇
  2009年   166篇
  2008年   151篇
  2007年   115篇
  2006年   123篇
  2005年   75篇
  2004年   73篇
  2003年   87篇
  2002年   82篇
  2001年   52篇
  2000年   52篇
  1999年   45篇
  1998年   53篇
  1997年   33篇
  1996年   31篇
  1995年   22篇
  1994年   15篇
  1993年   18篇
  1992年   5篇
  1991年   13篇
  1990年   8篇
  1989年   10篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
排序方式: 共有2828条查询结果,搜索用时 0 毫秒
91.
Pure phase K4Zr5O12 is synthesized via solid state method in the present work. Various K/Zr ratios and temperatures are applied, and the synthesis process is investigated in detail by means of X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Its catalytic activity for soot oxidation is studied by temperature programmed oxidation with different types of soot/catalyst contacts. It is revealed that K4Zr5O12 is very active in the presence of 2–10% O2 for both tight and loose contacts (Tp(tight) = 335 °C, Tp(ethanol) = 355 °C and Tp(shaking) = 370 °C). Thermal stability study shows that K4Zr5O12 is highly stable up to at least 900 °C.  相似文献   
92.
The effect of bed height on CO2 capture was investigated by carbonation/regeneration cyclic operations using a bubbling fluidized bed reactor. We used a potassium-based solid sorbent, SorbKX35T5 which was manufactured by the Korea Electric Power Research Institute. The sorbent consists of 35% K2CO3 for absorption and 65% supporters for mechanical strength. We used a fluidized bed reactor with an inner diameter of 0.05 m and a height of 0.8 m which was made of quartz and placed inside of a furnace. The operating temperatures were fixed at 70 °C and 150 °C for carbonation and regeneration, respectively. The carbonation/regeneration cyclic operations were performed three times at four different L/D (length vs diameter) ratios such as one, two, three, and four. The amount of CO2 captured was the most when L/D ratio was one, while the period of maintaining 100% CO2 removal was the longest as 6 minutes when L/D ratio was three. At each cycle, CO2 sorption capacity (g CO2/g sorbent) was decreased as L/D ratio was increased. The results obtained in this study can be applied to design and operate a large scale CO2 capture process composed of two fluidized bed reactors. This work was presented at the 7 th China-Korea Workshop on Clean Energy Technology held at Taiyuan, Shanxi, China, June 26–28, 2008.  相似文献   
93.
Vanado-, ferri-, and gallosilicate catalysts were prepared from the mixtures containing colloidal silica, corresponding metal source, tetrapropylammonium bromide, and NH4F by hydrothermal crystallization at 175°C for 7 days. The pH value of the reaction mixture was low (pH<8) compared to the conventional methods. The metal compounds have higher solubilites in these conditions than conventional conditions (pH>10). The size distribution and the size of final products were found to be more homogeneous and larger than those of metallosilicates prepared in strong alkaline media. The characterization of metallosilicates with IF!, X-ray diffraction, SEM, EPR, and29Si MAS NMR, indicated that corresponding metal atoms were successfully incorporated into the tetrahedral lattice sites of the ZSM-5 structure.  相似文献   
94.
Pd/CeO2/Ta/Si model catalysts were prepared by spin coating and sputter deposition method, and characterized by means of AFM, SEM and in situ XPS, especially focusing on the redox properties of Ce and Pd elements. Compared with thin CeO2 films (about 2.2nm), the thicker ones (about 22nm) maintained Ce4+ oxidation state even after treatment with H2 up to 500°C while the presence of Pd facilitated the reduction of ceria. The reduction of ceria brought about following that of PdO, which was explained by the spillover of hydride in Pd to CeO2 originating from hydrogen adsorption on the Pd surface. Compared with the sputter deposition method, spin coating produced the smaller size of Pd particles, thus leading to formation of the stable PdO species against hydrogen. Based on these results, a schematic model of Pd/CeO2/Ta/Si was suggested and it might be assumed that spin coating method provided with an environment similar to the conventional impregnation.  相似文献   
95.
Ln2B2O7 (Ln=Sm, Eu, Gd and Tb; B=Zr or Ti) with pyrochlore structure was prepared by sol–gel method for the high-temperature catalytic combustion. The crystal structure of Ln2B2O7 was identified by XRD and their surface area was about 4 m2/g after calcinations at 1200 °C. Catalytic activity of methane combustion was observed for Ln2Zr2O7 series and the best catalyst was Sm2Zr2O7. Its relative reaction rate per unit surface area at 600 °C was 2 cm3/m2 min, which was twice higher than that of Mn-substituted Sr hexaaluminate. From surface analysis by XPS, the low binding energy of each Ln element of Ln2Zr2O7 compared to that of Ln2Ti2O7, gave the catalytic activity of methane combustion.  相似文献   
96.
Silica nanoparticle-filled poly(ethylene 2,6-naphthalate) (PEN) composites were melt-blended to improve the mechanical and rheological properties of PEN. The melt viscosity and total torque values of the composites were reduced by the silica content. The crystallization exothermic peak shifted to a higher temperature, and the overall crystallization time was reduced by increasing the silica content. Non-isothermal crystallization kinetics was analyzed using the Ozawa and Avrami theories, and a combined method. The combined method was successful in describing the non-isothermal crystallization of these composites. The crystallization activation energy calculated using Kissinger's method was reduced, and the spherulite growth rate increased, with increasing silica content.A study of the nucleation activity, which indicated the influence of the filler on the polymer matrix, revealed that the fumed silica nanoparticles had a good nucleation effect on PEN.  相似文献   
97.
The mixed modifier effect (MME) is one of the most challenging puzzles in the field of oxide glasses, as there exists no universal quantitative theoretical model for accurately describing and predicting the nonlinear deviation of property values. In this paper, pairwise and ternary interactions are examined experimentally to understand the MME in a series of aluminosilicate glasses. By keeping the glass network former concentration constant and adjusting the molar ratios of three network modifiers (Na2O, K2O, and CaO), the MMEs in glass transition temperature (Tg), Vickers hardness (Hv), and activation energy (Ea) for aqueous dissolution for each modifier cation are investigated. We examine whether a pairwise interaction model is sufficient, or if ternary interactions also need to be included to predict the MME in these aluminosilicate glass systems. This work reveals that the pairwise model can be used to predict the MME for Tg in complex multiple-modifier glass systems using only two-body interaction factors. However, ternary mixed-modifier interactions are present in other properties such as Hv and Ea.  相似文献   
98.
Hybrid biocomposites are one of the emerging fields in polymer composites. The purpose of this study is the development and characterization of ceramic sheet (CS) hybrid polypropylene (PP) biocomposites for broadening of the field of potential applications of biocomposites. Hybrid PP biocomposites were manufactured with 20 wt % loadings of kenaf and the addition of a CS (single or double sided) by melting and compression molding. The effects of the CS on the mechanical and thermal properties of the hybrid PP biocomposites were analyzed in terms of tensile, flexural, and impact properties, and inflammability, smoke optical density, and toxicity of the combustion gas. Also, the surface morphology of fractured hybrid PP biocomposites was observed by SEM and AFM. In spite of the brittle properties of the ceramic, the mechanical properties of the hybrid PP biocomposites were improved and, also, the inflammability of the hybrid PP biocomposites with the CS was highly improved. As a result, full impregnation of CSs into the kenaf reinforced biocomposite can contribute to the improvement of both the mechanical properties and the inflammability of biocomposites, resulting in a broadening of the field of potential applications of biocomposites such as aerospace. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1917–1922, 2013  相似文献   
99.
The effects of pre-annealing on the microstructure development and piezoelectric properties for 0.95(K0.5Na0.5)NbO3–0.05LiSbO3 (0.95KNN–0.05LS) ceramics were investigated. The pre-annealing suppressed the abnormal grain growth in both the undoped and Mn-doped 0.95KNN–0.05LS ceramics. The pre-annealed samples possessed smaller abnormal grains, larger matrix grains, and a broader grain size distribution compared to the samples sintered without a pre-annealing step. The pre-annealed samples presented better dielectric and piezoelectric properties, a larger dielectric constant (εr) and electromechanical coupling factor (kp), and a smaller dielectric loss factor (tan δ).  相似文献   
100.
Transparent nanophase TiO2 thin films on soda lime glass were prepared from titanium tetraisopropoxide (TTIP) by a sol-gel dip-coating method. The TiO2 films had amorphous phase up to 400°C and anatase phase at 500°C. The amorphous TiO2 films obtained at 300–400°C showed considerable photoactivity for the degradation of formic acid. The photoactivity of the TiO2 films was enhanced with increasing calcination temperature from 300° to 500°C. The crystallinity of the anatase films at 500°C was improved with increasing calcination time up to 2 h and reduced with a further increase in calcination time to 4 h due to the significant formation of sodium titanate phase as a result of sodium diffusion. The four-time-dipping anatase films at 500°C exhibited the greatest photoactivity at the calcination time of 2 h. Sodium diffusion into TiO2 films was retarded by a SiO2 underlayer of 50 nm in thickness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号