首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1120篇
  免费   28篇
  国内免费   8篇
电工技术   13篇
综合类   2篇
化学工业   182篇
金属工艺   45篇
机械仪表   65篇
建筑科学   21篇
能源动力   64篇
轻工业   28篇
水利工程   2篇
石油天然气   3篇
无线电   148篇
一般工业技术   267篇
冶金工业   103篇
原子能技术   13篇
自动化技术   200篇
  2024年   7篇
  2023年   14篇
  2022年   43篇
  2021年   63篇
  2020年   46篇
  2019年   36篇
  2018年   48篇
  2017年   29篇
  2016年   49篇
  2015年   27篇
  2014年   41篇
  2013年   64篇
  2012年   44篇
  2011年   61篇
  2010年   42篇
  2009年   49篇
  2008年   52篇
  2007年   33篇
  2006年   44篇
  2005年   31篇
  2004年   32篇
  2003年   19篇
  2002年   24篇
  2001年   12篇
  2000年   16篇
  1999年   13篇
  1998年   15篇
  1997年   14篇
  1996年   22篇
  1995年   16篇
  1994年   17篇
  1993年   9篇
  1992年   8篇
  1991年   15篇
  1990年   6篇
  1989年   11篇
  1988年   14篇
  1987年   8篇
  1986年   5篇
  1985年   11篇
  1984年   7篇
  1983年   2篇
  1982年   3篇
  1981年   8篇
  1979年   7篇
  1978年   2篇
  1977年   3篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
排序方式: 共有1156条查询结果,搜索用时 15 毫秒
101.
Pyrochemical reprocessing in molten chloride salt medium has been considered as one of the best options for the reprocessing of spent metallic fuels. The AISI 316L stainless steel (SS) is envisaged as a candidate material for the fabrication of components for various unit operations like salt preparation vessel, electro‐refiner and cathode processor, on which ceramic coatings with metallic bond coat will be applied by the thermal plasma spraying. The unit operation like electro‐refining is carried out in the molten lithium chloride–potassium chloride (LiCl–KCl) eutectic salt at 773 K in argon atmosphere. The corrosion behaviour of the container vessel in molten chloride salts is therefore important, hence corrosion tests were carried out in a molten salt test assembly under argon gas atmosphere. The present paper discusses the corrosion behaviour of 316L SS in the molten LiCl–KCl eutectic salt at 873 K. The 316L SS samples were immersed in the molten LiCl–KCl eutectic for 25, 100 and 250 h, while 316L SS with yttria stabilized zirconia coating was exposed for 1000 h. The exposed samples were examined by optical and scanning electron microscope for corrosion attack. The X‐ray mappings of the cross‐section of the degraded layer onto the 316L SS indicated that the mechanism of corrosion corresponds to the selective diffusion of Cr to the surface with the formation of voids below, and the formation of chromium compounds at the surface. The results of the present study indicated that the yttria stabilized zirconia coating onto the 316L SS exhibits a better corrosion resistance in molten chloride salt than with uncoated 316L SS.  相似文献   
102.
A new parallel algorithm for transforming an arithmetic infix expression into a par se tree is presented. The technique is based on a result due to Fischer (1980) which enables the construction of the parse tree, by appropriately scanning the vector of precedence values associated with the elements of the expression. The algorithm presented here is suitable for execution on a shared memory model of an SIMD machine with no read/write conflicts permitted. It uses O(n) processors and has a time complexity of O(log2n) where n is the expression length. Parallel algorithms for generating code for an SIMD machine are also presented.  相似文献   
103.
Hariprasad  Simhadri  Dan  Surya Shankar 《SILICON》2023,15(1):117-126
Silicon - This paper presents a Vertical Line-Tunneling FET (VLTFET) optimized for superior performance in analog applications. The saturation mechanism, DC, and small-signal behaviors are...  相似文献   
104.
In this paper, we study how the magnetohydrodynamic (MHD) pulsatile flow of blood and heat transfer works through a constricted artery with a flexible wall. The human circulatory network consists of veins and arteries that sometimes contain constrictions, allowing the impact of the applied magnetic field on flow fields to be observed. The walls of the flowing medium are considered to be a function of time. The flowing blood is hypothesized as shear-thinning fluid, emulating Yeleswarapu's viscosity replica. Additionally, we consider the energy equation to understand the impact of a magnetic field on heat transfer rates for such flows. The vorticity transport equation along with the stream function equation is obtained using the vorticity–stream function technique. Numerical solutions of the governing nonlinear MHD equations and energy equation in addition to physically pertinent flow conditions were achieved by adapting a finite difference scheme. Considerable attention has been paid to ensure an accurate comparison between the current and previous results. The two sets of numbers appear to match closely. For an even deeper understanding of the flow and heat transport process, the effects of height of stenosis and diverse physiological parameters on time-averaged wall shear stress (TAWSS), rate of heat transport, and so on are explored in depth through their graphical depiction. In the vicinity of the constriction, it is observed that the separation becomes longer with increasing constriction height. Higher magnetic force strength leads to a reduction in separation length. Newtonian fluids transfer heat more rapidly in their narrowing regions and downstream than fluids with non-Newtonian behavior.  相似文献   
105.
In this study, a special experimental setup of EDSG using EDM and surface grinding machine has been developed in the laboratory to investigate the effect of seven input parameters namely tool polarity, peak current, pulse on-time, pulse off-time, rotational speed, abrasive particle size, and abrasive particle concentration on material removal rate (MRR) as performance measure of the process. The novelty of the present research work is that successful efforts have been made to machine the 6061Al/Al2O3p 10% metal matrix composites (MMC) by composite tool itself. The copper-based composite tool electrodes were fabricated by powder metallurgy route with different sizes of abrasives of silicon carbide, while 6061Al/Al2O3p 10% MMC were fabricated through stir-casting process. The research outcome will identify the important parameters and their effect on MRR of 6061Al/Al2O3p 10% composite in EDSG. The experimental results reveal that tool polarity, peak current, and rotational speed are the most influential parameters that affect MRR in EDSG process. The micro-structural and morphological analysis of machined surfaces has also been carried out to analyze the surface topography. It has been concluded that the abrasive particles substantially improves the MRR after removing the resolidified layer from the machined surface.  相似文献   
106.
Spread-spectrum techniques for fiber-fed microcellular networks   总被引:2,自引:0,他引:2  
It is well known that for a specified radio capacity, the peak performance [such as the minimum bit error rate (BER) or probability of outage] of subcarrier multiplexing (SCM)-based fiber-fed microcellular systems is limited by the nonlinearity of the optical source. Conversely, for a specified performance, the maximum radio capacity is restricted by the source nonlinearity. It is the goal of this paper to examine the robustness of a code-division multiple-access (CDMA)-based system in the presence of these nonlinearities. This is done by comparing the error and outage probabilities of a CDMA-based system to that of a conventional SCM system, which utilizes frequency-division multiple access (FDMA). It is shown that a CDMA system can relax the bounds on the performance or capacity. However, this improvement is obtained at the expense of large chunks of bandwidth. An alternative hybrid CDMA/FDMA approach is examined, wherein the inherent benefits of both CDMA and FDMA techniques are utilized. Performance evaluation shows that the hybrid system achieves the same system requirements in a more spectrally efficient manner  相似文献   
107.
This paper studies the problem of congestion control on wireless networks. A dynamical model for the end‐to‐end network flow control that exploits the differentiation between congestion loss and physical channel error loss is proposed. The introduction of a specific wireless model is motivated by the distinctive presence of channel errors, which are often not known exactly. We assume that each wireless link is associated with an additional error function that depends on the current flow along the link and that accounts for the packet loss rate caused by the physical channel. This leads to a new dynamic flow control scheme that naturally extends a known mathematical model for the fluid‐flow approximation of the Transmission Control Protocol for wireline networks. The main objective of this work is to study the dynamical properties of the new model: we analyze its nonlinear dynamics, derive its stability properties, and study its robustness to delays. We also present and discuss some ns‐2 simulations of its dynamics. This work additionally looks at the actual implementation of the proposed scheme: by requiring only modifications to the application layer rather than the transport one, no alterations to the network infrastructure or transport protocols are needed. The article argues that the new scheme appears to be not only theoretically meaningful but also practically relevant for an application layer implementation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
108.
The novelty of the controlled diffusion solidification (CDS) process is the mixing of two precursor alloys with different thermal masses to obtain the resultant desired alloy, which is subsequently cast into a near-net-shaped product. The critical event in the CDS process is the ability to generate a favorable environment during the mixing of the two precursor alloys to enable a well-distributed and copious nucleation event of the primary Al phase leading to a nondendritic morphology in the cast part. The turbulence dissipation energy coupled with the undercooling of the precursor alloy with the higher temperature enables the copious nucleation events, which are well distributed in the resultant mixture.  相似文献   
109.
The aim of the present paper is to study the low cycle fatigue and creep-fatigue interaction behavior of modified 9Cr-1Mo ferritic steel weld joint. Total axial strain controlled continuous cycling tests were conducted between 773 K and 873 K and at strain amplitudes ±0.25%, ±0.4%, ±0.6% and ±1%. Hold tests were also conducted at +0.6% and 823 K and 873 K temperatures to study the creep-fatigue interaction behavior of the weld joint. The alloy exhibited cyclic softening from first cycle onwards irrespective of the loading conditions. Failure location in the weld joint was correlated to the test parameters. Detailed replica study conducted on all the failed specimens revealed that most of the failures occurred in one side of the heat affected zone (HAZ) of the weld joint. Strain localization in the soft zone of the HAZ and subsurface creep cavity formation in this region and their linkage had caused enhanced crack propagation that translated into lower fatigue life of the weld joint at high temperatures. Type IV mode of failure was identified to be operative under tensile hold and high temperatures. The alloy was also found to be compressive dwell sensitive and it was ascertained that the lower life under compression hold compared to tension hold was due to the deleterious effect of oxidation.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号