首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1115篇
  免费   32篇
  国内免费   8篇
电工技术   13篇
综合类   2篇
化学工业   181篇
金属工艺   45篇
机械仪表   65篇
建筑科学   21篇
能源动力   64篇
轻工业   28篇
水利工程   2篇
石油天然气   3篇
无线电   148篇
一般工业技术   267篇
冶金工业   103篇
原子能技术   13篇
自动化技术   200篇
  2024年   7篇
  2023年   14篇
  2022年   42篇
  2021年   63篇
  2020年   46篇
  2019年   36篇
  2018年   48篇
  2017年   29篇
  2016年   49篇
  2015年   27篇
  2014年   41篇
  2013年   64篇
  2012年   44篇
  2011年   61篇
  2010年   42篇
  2009年   49篇
  2008年   52篇
  2007年   33篇
  2006年   44篇
  2005年   31篇
  2004年   32篇
  2003年   19篇
  2002年   24篇
  2001年   12篇
  2000年   16篇
  1999年   13篇
  1998年   15篇
  1997年   14篇
  1996年   22篇
  1995年   16篇
  1994年   17篇
  1993年   9篇
  1992年   8篇
  1991年   15篇
  1990年   6篇
  1989年   11篇
  1988年   14篇
  1987年   8篇
  1986年   5篇
  1985年   11篇
  1984年   7篇
  1983年   2篇
  1982年   3篇
  1981年   8篇
  1979年   7篇
  1978年   2篇
  1977年   3篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
排序方式: 共有1155条查询结果,搜索用时 125 毫秒
31.
This paper presents two types of nonlinear controllers for an autonomous quadrotor helicopter. One type, a feedback linearization controller involves high-order derivative terms and turns out to be quite sensitive to sensor noise as well as modeling uncertainty. The second type involves a new approach to an adaptive sliding mode controller using input augmentation in order to account for the underactuated property of the helicopter, sensor noise, and uncertainty without using control inputs of large magnitude. The sliding mode controller performs very well under noisy conditions, and adaptation can effectively estimate uncertainty such as ground effects. Recommended by Editorial Board member Hyo-Choong Bang under the direction of Editor Hyun Seok Yang. This work was supported by the Korea Research Foundation Grant (MOEHRD) KRF-2005-204-D00002, the Korea Science and Engineering Foundation(KOSEF) grant funded by the Korea government(MOST) R0A-2007-000-10017-0 and Engineering Research Institute at Seoul National University. Daewon Lee received the B.S. degree in Mechanical and Aerospace Engineering from Seoul National University (SNU), Seoul, Korea, in 2005, where he is currently working toward a Ph.D. degree in Mechanical and Aerospace Engineering. He has been a member of the UAV research team at SNU since 2005. His research interests include applications of nonlinear control and vision-based control of UAV. H. Jin Kim received the B.S. degree from Korea Advanced Institute of Technology (KAIST) in 1995, and the M.S. and Ph.D. degrees in Mechanical Engineering from University of California, Berkeley in 1999 and 2001, respectively. From 2002–2004, she was a Postdoctoral Researcher and Lecturer in Electrical Engineering and Computer Science (EECS), University of California, Berkeley (UC Berkeley). From 2004–2009, she was an Assistant Professor in the School of in Mechanical and Aerospace Engineering at Seoul National University (SNU), Seoul, Korea, where she is currently an Associate Professor. Her research interests include applications of nonlinear control theory and artificial intelligence for robotics, motion planning algorithms. Shankar Sastry received the B.Tech. degree from the Indian Institute of Technology, Bombay, in 1977, and the M.S. degree in EECS, the M.A. degree in mathematics, and the Ph.D. degree in EECS from UC Berkeley, in 1979, 1980, and 1981, respectively. He is currently Dean of the College of Engineering at UC Berkeley. He was formerly the Director of the Center for Information Technology Research in the Interest of Society (CITRIS). He served as Chair of the EECS Department from January, 2001 through June 2004. In 2000, he served as Director of the Information Technology Office at DARPA. From 1996 to 1999, he was the Director of the Electronics Research Laboratory at Berkeley (an organized research unit on the Berkeley campus conducting research in computer sciences and all aspects of electrical engineering). He is the NEC Distinguished Professor of Electrical Engineering and Computer Sciences and holds faculty appointments in the Departments of Bioengineering, EECS and Mechanical Engineering. Prior to joining the EECS faculty in 1983 he was a Professor with the Massachusetts Institute of Technology (MIT), Cambridge. He is a member of the National Academy of Engineering and Fellow of the IEEE.  相似文献   
32.
In this work, a deep learning (DL)-based massive multiple-input multiple-output (mMIMO) orthogonal frequency division multiplexing (OFDM) system is investigated over the tapped delay line type C (TDL-C) model with a Rayleigh fading distribution at frequencies ranging from 0.5 to 100 GHz. The proposed bi-directional long short-term memory (Bi-LSTM) channel state information (CSI) estimator uses online learning during training and offline learning during the practical implementation phase. The design of the estimator takes into account situations in which prior knowledge of channel statistics is limited and targets excellent performance, even with limited pilot symbols (PS). Three separate loss functions (mean square logarithmic error [MSLE], Huber, and Kullback–Leibler Distance [KLD]) are assessed in three classification layers. The symbol error rate (SER) and outage probability performance of the proposed estimator are evaluated using a number of optimization techniques, such as stochastic gradient descent (SGD), momentum, and the adaptive gradient (AdaGrad) algorithm. The Bi-LSTM-based CSI estimator is trained considering a specific number of PS. It can be readily seen that by incorporating a cyclic prefix (CP), the system becomes more resilient to channel impairments, resulting in a lower SER. Simulations show that the SGD optimization approach and Huber loss function-trained Bi-LSTM-based CSI estimator have the lowest SER and very high estimation accuracy. By using deep neural networks (DNNs), the Bi-LSTM method for CSI estimation achieves a superior channel capacity (in bps/Hz) at 10 dB than long short-term memory (LSTM) and other conventional CSI estimators, such as minimum mean square error (MMSE) and least squares (LS). The simulation results validate the analytical results in the study.  相似文献   
33.
Internet of Things (IoT) security is the act of securing IoT devices and networks. IoT devices, including industrial machines, smart energy grids, and building automation, are extremely vulnerable. With the goal of shielding network systems from illegal access in cloud servers and IoT systems, Intrusion Detection Systems (IDSs) and Network-based Intrusion Prevention Systems (NBIPSs) are proposed in this study. An intrusion prevention system is proposed to realize NBIPS to safeguard top to bottom engineering. The proposed NBIPS inspects network activity streams to identify and counteract misuse instances. The NBIPS is usually located specifically behind a firewall, and it provides a reciprocal layer of investigation that adversely chooses unsafe substances. Network-based IPS sensors can be installed either in an inline or a passive model. An inline sensor is installed to monitor the traffic passing through it. The sensors are installed to stop attacks by blocking the traffic using an IoT signature-based protocol.  相似文献   
34.
Engineering with Computers - Plate structures are the integral parts of any maritime engineering platform. With the recent focus on composite structures, the need for optimizing their design and...  相似文献   
35.

In recent years, we face an increasing interest in protecting multimedia data and copyrights due to the high exchange of information. Attackers are trying to get confidential information from various sources, which brings the importance of securing the data. Many researchers implemented techniques to hide secret information to maintain the integrity and privacy of data. In order to protect confidential data, histogram-based reversible data hiding with other cryptographic algorithms are widely used. Therefore, in the proposed work, a robust method for securing digital video is suggested. We implemented histogram bit shifting based reversible data hiding by embedding the encrypted watermark in featured video frames. Histogram bit shifting is used for hiding highly secured watermarks so that security for the watermark symbol is also being achieved. The novelty of the work is that only based on the quality threshold a few unique frames are selected, which holds the encrypted watermark symbol. The optimal value for this threshold is obtained using the Firefly Algorithm. The proposed method is capable of hiding high-capacity data in the video signal. The experimental result shows the higher capacity and video quality compared to other reversible data hiding techniques. The recovered watermark provides better identity identification against various attacks. A high value of PSNR and a low value of BER and MSE is reported from the results.

  相似文献   
36.

In this article, we introduce new field equations for incompressible non-viscous fluids, which can be treated similarly to Maxwell’s electromagnetic equations based on artificial intelligence algorithms. Lagrangian and Hamiltonian formulations are used to arrive at field equations that are solved using convolutional neural networks. Four linear differential equations, which describe the two fields, namely, the dynamic pressure and the vortex fields, are derived, and these can be used in place of Euler’s equation. The only assumption while deriving this equation is that the dynamic pressure and vortex fields obey the superposition principle. The important finding to be noted is that Euler’s fluid equations can be converted into field equations analogous to Maxwell’s electromagnetic equations. We solve the flow problem for laminar flow past a cylinder, sphere, and cone in two dimensions similar to the conduction in a uniform electric field and arrive at closed-form expressions. These closed-form expressions, which are obtained for the potentials of fluid flow, are similar to the streamline potential functions in the case of fluid dynamics.

  相似文献   
37.
The insulation resistance of conventional atmospheric plasma-sprayed alumina coatings with 10–15% porosity is ~1011 Ω. The presence of pores, lamellae boundaries, and other non-fillings dampens the insulation resistance of the coating. In the present study, aluminum phosphate was used to seal the surface of plasma-sprayed alumina coating and evaluate the effect of sealing on the insulation resistance and its thermal cycling response. Sealing was carried out with three concentrations of sealant (P/Al molar ratio of 3, 10, and 15). Characterization by X-ray diffraction and scanning electron microscopy revealed the primary sealing phase as aluminum metaphosphate and effective sealing of the pores by the aluminum phosphate phases. Insulation resistance is improved by two orders of magnitude after sealing the coated samples. Sealing with P/Al molar ratio 3 exhibited maximum insulation resistance of ~1013 Ω at room temperature. Thermal cycling studies between 650°C and 200°C on the sealed samples showed deterioration in thermal cycling life after sealing.  相似文献   
38.
A vendor-managed inventory (VMI) relationship between a downstream retailer and an upstream vendor consists of two distinct components: (i) information sharing (IS) and (ii) a shift in decision-making responsibility. This study compares these two components of VMI in a two-stage serial supply chain based on the ‘static uncertainty’ strategy under dynamic and random demand with fill rate constraints. Numerical experiments are conducted using analytical models to identify the conditions where the incremental value of VMI over IS is significant. The results provide guidelines relevant to academia and supply chain practitioners in taking VMI adoption decision above and beyond IS according to their specific business environment.  相似文献   
39.
Burnishing avoids the need for super finishing operations after the conventional turning process, to enhance the surface quality. This paper deals with the surface modifications of Al(B4C)p Metal Matrix Composites (MMC) workpiece material after burnishing with a TiAlN coated WC roller. The burnishing speed, lubrication type, burnishing passes, and coating were the input parameters. Surface hardness and roughness after the burnishing were studied. It was found that the coating on the WC roller had enhanced the hardness in the workpiece after burnishing in the case of Al-5?wt.% (B4C)p, under all conditions. The effect of the coating on the work piece surface hardness was not significant with Al-10?wt.% (B4C)p. While burnishing Al-5?wt.% (B4C)p, the minimum surface roughness combined with maximum surface hardness was obtained, during the third pass under dry condition using uncoated rollers. The number of passes to achieve the desired surface conditions reduced, on using coated rollers with kerosene as the lubricant.  相似文献   
40.
Micro-drilling in carbon fiber reinforced plastic (CFRP) composite material is challenging because this material machining is difficult due to anisotropic, abrasive and non-homogeneous properties and also downscaling of cutting process parameters affect the cutting forces and micro-drilled hole quality extensively. In this work, experimental results based statistical analysis is applied to investigate feed and cutting speed effect on cutting force components and hole quality. Analysis of variance based regression equation is used to predict cutting forces and hole quality and their trend are described by response surface methodology. Results show that roundness error and delamination factor have similar trends to those of radial forces and thrust force, respectively. Non-linear trends of cutting forces and hole quality errors are observed during downscaling of the micro-drill feed value. Optimization results show that cutting forces and hole quality errors are minimum at a feed value which is almost equal to the tool edge radius rather than at the lowest feed value. Therefore, the presented results clearly show the influences of size effects on cutting forces and hole quality parameters in micro-drilling of CFRP composite material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号