首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2815篇
  免费   1篇
电工技术   2篇
化学工业   22篇
金属工艺   1篇
机械仪表   1篇
建筑科学   1篇
轻工业   2篇
石油天然气   3篇
无线电   3篇
一般工业技术   10篇
冶金工业   2749篇
自动化技术   22篇
  2018年   1篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2006年   4篇
  2004年   2篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   80篇
  1998年   803篇
  1997年   437篇
  1996年   308篇
  1995年   166篇
  1994年   152篇
  1993年   168篇
  1992年   17篇
  1991年   37篇
  1990年   35篇
  1989年   37篇
  1988年   44篇
  1987年   44篇
  1986年   28篇
  1985年   32篇
  1984年   1篇
  1983年   4篇
  1982年   15篇
  1981年   14篇
  1980年   31篇
  1979年   1篇
  1978年   8篇
  1977年   94篇
  1976年   212篇
  1975年   5篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1966年   2篇
  1965年   1篇
  1955年   4篇
排序方式: 共有2816条查询结果,搜索用时 15 毫秒
121.
122.
123.
124.
The ability of receptors (R) to activate G-proteins (G) is promoted by the binding of agonists, reflecting their induction of a receptor conformation which facilitates both the formation of a RG complex and guanine nucleotide exchange. Recent evidence from isolated membrane studies has indicated, however, that some receptors have the inherent ability to form RG complexes and promote GDP/GTP exchange in their unoccupied state. These receptors preferentially activate pertussis toxin-sensitive G-proteins (i.e. Gi/G(o)) and the interactions of R and G are modulated by monovalent cations (most notably Na+) both in the unoccupied and agonist-occupied states. Basal G-protein activation by such receptors is reduced both by increasing levels of cation and by antagonists which may act by inducing receptor conformations which are less favorable for RG complexation. This behaviour conforms to the predictions of a ternary complex model of receptor function and can be considered in structural terms for those receptors such as the alpha-2 adrenergic receptor where ligand binding and G-protein activation regions have been proposed.  相似文献   
125.
126.
127.
P2U/2Y-receptors elicit multiple signaling in Madin-Darby canine kidney (MDCK) cells, including a transient increase of [Ca2+]i, activation of phospholipases C (PLC) and A2 (PLA2), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). This study examines the involvement of these signaling pathways in the inhibition of Na+,K+,Cl- cotransport in MDCK cells by ATP. The level of ATP-induced inhibition of this carrier ( approximately 50% of control values) was insensitive to cholera and pertussis toxins, to the PKC inhibitor calphostin C, to the cyclic nucleotide-dependent protein kinase inhibitors, H-89 and H-8 as well as to the inhibitor of serine-threonine type 1 and 2A phosphoprotein phosphatases okadaic acid. ATP led to a transient increase of [Ca2+]i that was abolished by a chelator of Ca2+i, BAPTA. However, neither BAPTA nor the Ca2+ ionophore A231287, or an inhibitor of endoplasmic reticulum Ca2+-pump, thapsigargin, modified ATP-induced inhibition of Na+,K+, Cl- cotransport. An inhibitor of PLC, U73122, and an inhibitor of MAPK kinase (MEK), PD98059, blocked ATP-induced inositol-1,4, 5-triphosphate production and MAPK phosphorylation, respectively. However, these compounds did not modify the effect of ATP on Na+,K+, Cl- cotransport activity. Inhibitors of PLA2 (AACOCF3), cycloxygenase (indomethacin) and lypoxygenase (NDGA) as well as exogenous arachidonic acid also did not affect ATP-induced inhibition of Na+,K+,Cl- cotransport. Inhibition of the carrier by ATP persisted in the presence of inhibitors of epithelial Na+ channels (amiloride), Cl- channels (NPPB) and Na+/H+ exchanger (EIPA) and was insensitive to cell volume modulation in anisosmotic media and to depletion of cells with monovalent ions, thus ruling out the role of other ion transporters in purinoceptor-induced inhibition of Na+,K+,Cl- cotransport. Our data demonstrate that none of the known purinoceptor-stimulated signaling pathways mediate ATP-induced inhibition of Na+,K+,Cl- cotransport and suggest the presence of a novel P2-receptor-coupled signaling mechanism.  相似文献   
128.
The hypothesis that heparin-coated perfusion circuits reduce thrombin formation and activity; fibrinolysis; and platelet, complement, and neutrophil activation was tested in 20 consecutive, randomized adults who had cardiopulmonary bypass. Twenty identical perfusion systems were used; in 10, all blood-contacting surfaces were coated with partially degraded heparin (Carmeda process; Medtronic Cardiopulmonary, Anaheim, Calif.). All patients received a 300 U/kg dose of heparin. Activated clotting times were maintained longer than 400 seconds. Cardiopulmonary bypass lasted 36 to 244 minutes. Blood samples for platelet count, platelet response to adenosine diphosphate, plasma beta-thromboglobulin, inactivated complement 3b, neutrophil elastase, fibrinopeptide A, prothrombin fragment F1.2, thrombin-antithrombin complex, tissue plasminogen activator, plasminogen activator inhibitor-1, plasmin alpha 2-antiplasmin complex, and D-dimer were obtained at these times: after heparin was given, 5 and 30 minutes after cardiopulmonary bypass was started, within 5 minutes after bypass was stopped, and 15 minutes after protamine was given. After cardiopulmonary bypass, tubing segments were analyzed for surface-adsorbed anti-thrombin, fibrinogen, factor XII, and von Willebrand factor by radioimmunoassay. Heparin-coated circuits significantly (p < 0.001) reduced platelet adhesion and maintained platelet sensitivity to adenosine diphosphate (p = 0.015), but did not reduce release of beta-thromboglobulin. There were no significant differences between groups at any time for fibrinopeptide A, prothrombin fragment F1.2, or thrombin-antithrombin complex or in the markers for fibrinolysis: D-dimer, tissue plasminogen activator, plasminogen activator inhibitor-1, and alpha 2-antiplasmin complex. In both groups, concentrations of prothrombin fragment F1.2 and thrombin-antithrombin complex increased progressively and significantly during cardiopulmonary bypass and after protamine was given. Concentrations of D-dimer, alpha 2-antiplasmin complex, and plasminogen activator inhibitor-1 also increased significantly during bypass in both groups. Fibrinopeptide A levels did not increase during bypass but in both groups increased significantly after protamine was given. No significant differences were observed between groups for levels of inactivated complement 3b or neutrophil elastase. Radioimmunoassay showed a significant increase in surface-adsorbed antithrombin on coated circuits but no significant differences between groups for other proteins. We conclude that heparin-coated circuits used with standard doses of systemic heparin reduce platelet adhesion and improve platelet function but do not produce a meaningful anticoagulant effect during clinical cardiopulmonary bypass. The data do not support the practice of reducing systemic heparin doses during cardiac operations with heparin-coated extracorporeal perfusion circuitry.  相似文献   
129.
Clinical application of colony-stimulating factors (CSFs) such as recombinant human granulocyte colony-stimulating factor (rhG-CSF) and recombinant human granulocyte macrophage colony-stimulating factor (rhGM-CSF) are advancing rapidly now that these factors are approved as indicated therapy in patients with chemotherapy-induced neutropenia, patients undergoing autologous bone marrow transplantation (BMT) and patients who develop graft failure after BMT. Novel CSFs are also being explored for potential clinical application in situations not as significantly affected by rhG-CSF or rhGM-CSF. Studies determining unique effects of novel factors, combinations of factors and combinations with peripheral blood progenitor cell fusions which may lead to future clinical applications of CSFs will be reviewed.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号