首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   597篇
  免费   34篇
  国内免费   1篇
电工技术   6篇
综合类   1篇
化学工业   201篇
金属工艺   6篇
机械仪表   23篇
建筑科学   19篇
能源动力   35篇
轻工业   25篇
水利工程   1篇
石油天然气   1篇
武器工业   1篇
无线电   30篇
一般工业技术   158篇
冶金工业   49篇
原子能技术   3篇
自动化技术   73篇
  2023年   11篇
  2022年   35篇
  2021年   35篇
  2020年   14篇
  2019年   21篇
  2018年   30篇
  2017年   22篇
  2016年   24篇
  2015年   12篇
  2014年   31篇
  2013年   26篇
  2012年   39篇
  2011年   56篇
  2010年   26篇
  2009年   31篇
  2008年   27篇
  2007年   21篇
  2006年   24篇
  2005年   8篇
  2004年   22篇
  2003年   14篇
  2002年   16篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1996年   3篇
  1995年   6篇
  1994年   4篇
  1992年   7篇
  1991年   5篇
  1986年   4篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   3篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
  1963年   2篇
  1960年   1篇
  1956年   1篇
  1954年   1篇
排序方式: 共有632条查询结果,搜索用时 15 毫秒
11.
12.
A district heating (DH) system in the Russian city of Omsk has been considered as a case study. This study is based on the data set of temperature and demand recorded over two-year operation of the DH system. We provide an insight on how the heat demand profile is met by the control framework. The paper quantifies the DH system performance by using heat load curves, maximum, minimum and average values of temperature, paving the way for a modelling approach. Central heating process in Omsk in 2017 was generally smoother than in 2016, while peak values are also lower. In 2017, its supply temperature was about 5°C closer to the control curve. The dispersion of the points was reduced between 2016 and 2017, especially at higher outdoor temperatures. Further lowering annual and peak heat demand, which are respectively 4% and 9% lower in 2017 should be a priority in future.  相似文献   
13.
The effect of three Group IV metals (titanium, zirconium and tin) on the growth, morphology and chemical composition of the freshwater diatom Synedra acus subsp. radians (Kützing) Skabichevsky was studied and compared with germanium. The elements in their highest oxidation states were introduced into the culture medium in the form of hydroxides. Germanium was found to be toxic at ??5?mol. % of the total Ge-Si content in the culture medium. In the presence of other elements, a slight decrease in the cell division rate was observed independent of the element within 1?C15% content interval. The analysis of the obtained biomass and silica valves revealed the presence of all the added elements within the cells. However, only germanium was incorporated into the valves in considerable amounts. S. acus cultivation with the addition of 5% Group IV elements resulted in cells having the following aberrations in the structure of the silica valves: changes in valve shape, thickening of valves, alterations of the areolae rows, irregularity or absence of the areolae and a decrease in the mechanical strength of valves. Moreover, the effect of Group IV elements on silica formation was simulated in vitro using a synthetic polymer bearing polyamine and phosphate groups found in silaffines (proteins from diatom frustules). The studied elements were observed to provoke the formation of unstable silica particles in solution. We propose that the observed effects of germanium, titanium, zirconium and tin on diatom growth and structure are due to uncontrollable silica condensation.  相似文献   
14.
15.
Charge migration is a ubiquitous phenomenon with profound implications throughout many areas of chemistry, physics, biology, and materials science. The long-term vision of designing functional materials with tailored molecular-scale properties has triggered an increasing quest to identify prototypical systems where truly molecular conduction pathways play a fundamental role. Such pathways can be formed due to the molecular organization of various organic materials and are widely used to discuss electronic properties at the nanometer scale. Here, we present a computational methodology to study charge propagation in organic molecular stacks at nano and sub-nanoscales and exploit this methodology to demonstrate that moving charge carriers strongly affect the values of the physical quantities controlling their motion. The approach is also expected to find broad application in the field of charge migration in soft matter systems.  相似文献   
16.

The present work is devoted to the development of new structural composite material having the unique complex of properties for operating in ultrahard conditions that combine high temperatures, radiation, and aggressive environments. A new three-layer composite tube material based on vanadium alloy (V-4Ti-4Cr) protected by stainless steel (Fe-0.2C-13Cr) has been obtained by co-extrusion. Mechanism and kinetics of formation as well as structure, composition, and mechanical properties of “transition” area between vanadium alloy and stainless steel have been studied. The transition area (13- to 22-µm thick) of the diffusion interaction between vanadium alloy and steel was formed after co-extrusion. The microstructure in the transition area was rather complicated comprising different grain sizes in components, but having no defects or brittle phases. Tensile strength of the composite was an average 493 ± 22 MPa, and the elongation was 26 ± 3 pct. Annealing at 1073 K (800 °C) increased the thickness of transition area up to 1.2 times, homogenized microstructure, and slightly changed mechanical properties. Annealing at 1273 K (1000 °C) further increased the thickness of transition area and also lead to intensive grain growth in steel and sometimes to separation between composite components during tensile tests. Annealing at 1073 K (800 °C) is proposed as appropriate heat treatment after co-extrusion of composite providing balance between diffusion interaction thickness and microstructure and monolithic-like behavior of composite during tensile tests.

  相似文献   
17.
Nanocomposites based on sequential semi–interpenetrating polymer networks (semi–IPNs) of crosslinked polyurethane and linear poly(2‐hydroxyethyl methacrylate) filled with 1–15 wt % of nanofiller densil were prepared and investigated. Nanofiller densil used in an attempt to control the microphase separation of the polymer matrix by polymer–filler interactions. The morphology (SAXS, AFM), mechanical properties (stress–strain), thermal transitions (DSC) and polymer dynamics (DRS, TSDC) of the nanocomposites were investigated. Special attention has been paid to the raising of the hydration properties and the dynamics of water molecules in the nanocomposites in the perspective of biomedical applications. Nanoparticles were found to aggregate partially for higher than 3 and 5 wt % filler loading in semi–IPNs with 17 and 37 wt % PHEMA, respectively. The results show that the good hydration properties of the semi–IPN matrix are preserved in the nanocomposites, which in combination with results of thermal and dielectric techniques revealed also the existence of polymer–polymer and polymer–filler interactions. These interactions results also in the improvement of physical and mechanical properties of the nanocomposites in compare with the neat matrix. The improvement of mechanical properties in combination with hydrophilicity and biocompatibility of nanocomposites are promising for use these materials for biomedical application namely as surgical films for wound treatment and as material for producing the medical devises. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43122.  相似文献   
18.
Monophasic gel with stoichiometric 3Al2O3·2SiO2 composition and gels with 0.99, 1.96, and 2.91 mol% La2O3 added were sol–gel derived. The crystallization path, structure evolution, microstructure, and morphology of calcined premullite powders and sintered ceramic bodies have been investigated as a function of La2O3 content and sintering temperature. In addition to mullite, spinel phase at about 980°C, and α‐alumina at above 1000°C were determined; however, neither La2O3 nor La‐related compounds had crystallized. The La2O3 predominately incorporated into the glassy phase, enhanced with La2O3 level, which affected both mullite structure and composition, as confirmed by electron microscopy, Rietveld structure refinement, determination of unit cell parameters, electron microscopy, and achieved density of the sintered bodies. Increased thermal treatment changes the alumina/silica ratio in mullite (towards 3:2 below 1200°C, and toward 2:1 above), and decreases the mullite/amorphous ratio. Sintered dense ceramic bodies revealed a positive densification effect and increased sinterability as a result of the lanthanum‐induced increase in glassy phase.  相似文献   
19.
Polymeric nanocapsules are attractive devices with a number of potential applications. In the present contribution we describe a method for nanocapsule preparation which is based on the formation of nanosized templates (mesoglobules, prepared from thermo-responsive poly(methoxydiethyleneglycol methacrylate)s, PDEGMA). These mesoglobules were coated with a cross-linked shell formed by pseudo-seeded radical polymerization of either N-isopropylacrylamide or 2-hydroxyethylmethacrylate in the presence of a cross-linking agent. Dissolution and removal of templates were achieved by extensive dialysis against water at temperatures below the LCST of PDEGMA. The obtained nanocapsules were visualized by transmission electron microscopy and their dimensions were determined by dynamic light scattering. The differences in the morphology of the nanocapsules were attributed to the different structures of the cross-linked membranes.  相似文献   
20.
Material properties and fire test results   总被引:1,自引:0,他引:1       下载免费PDF全文
Five material properties commonly used to describe the fire behavior of solids were evaluated as sole explanatory variables for four small‐scale fire tests with pass/fail outcomes by using a physically based probabilistic (phlogistic) burning model. The phlogistic model describes the likelihood of passing vertical Bunsen burner tests and a regulatory heat release rate test reasonably well over a wide range of material properties, as deduced from the correlation coefficient and mean deviation of the predicted and measured values. Of the thermal, combustion, and fire properties examined, the best predictors of the likelihood of passing the fire tests of this study were the heat of combustion of the sample, the heat release capacity, and the heat release parameter. The relative merits and drawbacks of qualitative (threshold) and quantitative (probabilistic) approaches to predicting fire test results using thermal and combustion properties are discussed. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号