首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   2篇
综合类   1篇
化学工业   8篇
金属工艺   3篇
机械仪表   13篇
建筑科学   1篇
无线电   6篇
一般工业技术   25篇
原子能技术   1篇
自动化技术   7篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   8篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
11.
12.
Reinforcing the cavity cell walls of polymer foams using nanoparticles can offer a new era for the property‐structure‐processing field in the development of functionalized ultra‐light components and devices manufactured from foam. When the nanoparticles are exfoliated in polymers, the viscosity substantially increases and thus mixing or foaming usually becomes almost impossible. We use CO2 supercritical fluid (CO2 SCF) for the mixing and foaming of poly(ethylene‐vinyl acetate) copolymer (EVA) with montmorillonite (MMT) nanoplatelets. The in situ evaporation of CO2 induces robust cavity cells of the EVA/MMT nanocomposite foam in a stable form of spherical shapes, which are seldom achieved by other methods. As the bubble grows and becomes stabilized in CO2 SCF, the exfoliated MMT nanoparticles are aligned at the cell walls by the Gibbs adsorption principle to minimize the surface energy at the gas–liquid interface and increase the rupture strength of the cavity walls. It is demonstrated that the developed methodology can be successfully used for foaming EVA containing high vinyl acetate (VA) content (>40%). Since EVA is too soft to construct cell walls of foam using conventional methods, the applicability of the developed methodology is extensively broadened for superior adhesion and compatibility with other materials. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46615.  相似文献   
13.
Wafer removal rates and defects were investigated for 200 mm tetraethyl orthosilicate (TEOS) oxide chemical mechanical planarization (CMP) processes using two types of CMP pads: a porous pad and a solid pad with micro-holes. An initial CMP test conducted with fumed silica based-slurry and a conditioner with 180 μm diamond revealed that the wafer removal rates by the solid pad with micro-holes were approximately 10% lower than those by the porous pad, but scratch type defects were reduced. In order to increase the removal rate of a solid pad with micro-holes to the comparable level of a regular porous pad without changing process parameters, it was decided to modify conditioner design by using different diamond size from 70 to 130 μm. It was found that wafer removal rates increased from 2973 to 2587 Å/min and defect counts reduced from 5.3 to 1.7 by decreasing the diamond size from 180 to 70 μm in the case of the solid pad with micro-holes. Various pad surface analysis results, including contact area estimation and microscopic observations, also revealed that a smaller diamond conditioner generated the pad texture with finer and more regular pad asperities.  相似文献   
14.
Graphene is a zero band-gap semi-metal with remarkable electromagnetic and mechanical characteristics. This study is the first ever attempt to use graphene in the surface plasmon resonance (SPR) sensor as replacement material for gold/silver. Graphene, comprised of a single atomic layer of carbon, is a purely two-dimensional material and it is an ideal candidate for use as a biosensor because of its high surface-to-volume ratio. This sensor is based on the resonance occasion of the surface plasmon wave (SPW) according to the dielectric constants of each metal film and detected material in gas or aqueous phase. Graphene in the SPR sensor is expected to enlarge the range of analyte to bio-aerosols based on the superior electromagnetic properties of graphene. In this study, a SPR-based fiber optic sensor coated with multi-layered graphene is described. The multi-layered graphene film synthesized by chemical vapor deposition (CVD) on Ni substrate was transferred on the sensing region of an optical fiber. The graphene coated SPR sensor is used to analyze the interaction between structured DNA biotin and Streptavidin is analyzed. Transmitted light after passing through the sensing region is measured by a spectrometer and multimeter. As the light source, blue light which of 450 to 460 nm in wavelength was used. We observed the SPR phenomena in the sensor and show the contrary trends between bare fiber and graphene coated fiber. The fabricated graphene based fiber optic sensor shows excellent detection sensitivity of the interaction between structured DNA and Streptavidin.  相似文献   
15.
We develop two simple methods-the dip coat stamping and lift-off methods-to transfer large area, high quality graphene films onto the top and side faces of the polymer optical fiber. The graphene films can be synthesized using chemical vapor deposition method on large Cu foils. After synthesis, the graphene films are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The polymer optical fiber probe with the transferred graphene film can be used as a chemical sensor for the detection of various organic aerosols.  相似文献   
16.
Journal of Mechanical Science and Technology - Early detection of highly pathogenic strains is particularly important from the point of view of controlling and minimizing the spread of the virus....  相似文献   
17.
Kim  Na-Yeon  Kim  Goeun  Sun  Hanna  Hwang  Uiseok  Kim  Junyoung  Kwak  Donggeon  Park  In-Kyung  Kim  Taesung  Suhr  Jonghwan  Nam  Jae-Do 《Journal of Materials Science》2022,57(26):12318-12328
Journal of Materials Science - Cerium oxide nanoparticles in the size of Ca. 100 nm usually have a degree of crystallinity over 95% and the ratio of Ce3+/Ce4+ at around 40%, which are...  相似文献   
18.
19.
Si:H nanoparticles have been generated from 3 nm to 500 nm in count mean diameter (CMD) using a plasma chemical vapor deposition (CVD) system. In the present work, the nanoparticles are synthesized using cold plasma in order to get monodispersed size distribution with a combination of square wave modulated RF pulse plasma and a hydrogen gas pulse for better control of their size. The size of synthesized nanoparticles was measured by scanning mobility particle sizer (SMPS). The synthesis was carried out using pulse plasma with on-time of 1 s and off-time of 4 s. During 1 s on-time of plasma we added hydrogen gas pulses varying from 0.1 s to 0.9 s. Our results show that by utilizing dual pulse plasma and by controlling hydrogen gas pulse on-time we achieved smaller diameter Si nanoparticles. Hence, it is easier to generate smaller nanoparticles which generally have quantum effect and be utilized for various applications especially in solar cell application.  相似文献   
20.
Recently, many studies have been focused on the development of fiber optic sensor systems for various gases and vapors. In the present study, an intrinsic polymer optical fiber (POF) sensor using graphene is described for the purpose of acetone vapor sensing for the first time. Observations on the continuous measurement of acetone vapor in dehydrated air are presented. The principle of operation of sensor transduction relies on the dependence of the reflectance on the optical and geometric properties of the sensitive over layered when the vapor molecules are adsorbed on the graphene film. For the same purpose the CVD synthesized graphene film was transferred on the POF end. The synthesized graphene film thickness was evaluated using atomic force microscopy (AFM), Raman spectroscopy and transmission electron microscopy (TEM). For the preliminary evaluation using volatile organic compounds, we evaluated the sensor performance for acetone. Upon the interaction of the sensor with acetone vapor, the variation in the reflected light was monitored as a function of the acetone concentration. The sensor response shows a significant change in sensitivity as compared with the POF probe without a graphene coating. The present sensor shows a satisfactory response upon exposure to various concentrations of acetone vapor from 44 ppm to 352 ppm. To the best of our knowledge, the use of graphene film along with POF for the sensing of volatile organic compounds has not previously been reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号