首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   28篇
  国内免费   3篇
电工技术   7篇
综合类   1篇
化学工业   83篇
金属工艺   3篇
机械仪表   12篇
建筑科学   13篇
能源动力   26篇
轻工业   65篇
水利工程   1篇
石油天然气   1篇
无线电   30篇
一般工业技术   101篇
冶金工业   26篇
原子能技术   1篇
自动化技术   60篇
  2024年   3篇
  2023年   9篇
  2022年   13篇
  2021年   13篇
  2020年   10篇
  2019年   12篇
  2018年   13篇
  2017年   15篇
  2016年   17篇
  2015年   7篇
  2014年   21篇
  2013年   61篇
  2012年   42篇
  2011年   36篇
  2010年   18篇
  2009年   20篇
  2008年   15篇
  2007年   16篇
  2006年   5篇
  2005年   10篇
  2004年   11篇
  2003年   5篇
  2002年   8篇
  2001年   3篇
  2000年   1篇
  1999年   6篇
  1998年   3篇
  1997年   5篇
  1996年   10篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   4篇
  1986年   1篇
  1979年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有430条查询结果,搜索用时 15 毫秒
91.
Texture analysis is one possible method of detecting features in biomedical images. During texture analysis, texture‐related information is found by examining local variations in image brightness. Four‐dimensional (4D) Haralick texture analysis is a method that extracts local variations along space and time dimensions and represents them as a collection of 14 statistical parameters. However, application of the 4D Haralick method on large time‐dependent image datasets is hindered by data retrieval, computation, and memory requirements. This paper describes a parallel implementation using a distributed component‐based framework of 4D Haralick texture analysis on PC clusters. The experimental performance results show that good performance can be achieved for this application via combined use of task‐ and data‐parallelism. In addition, we show that our 4D texture analysis implementation can be used to classify imaged tissues. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
92.
Most of the current design methods for driven piles were developed for closed-ended pipe piles driven in either pure clay or clean sand. These methods are sometimes used for H piles as well, even though the axial load response of H piles is different from that of pipe piles. Furthermore, in reality, soil profiles often consist of multiple layers of soils that may contain sand, clay, silt or a mixture of these three particle sizes. Therefore, accurate prediction of the ultimate bearing capacity of H piles driven in a mixed soil is very challenging. In addition, although results of well documented load tests on pipe piles are available, the literature contains limited information on the design of H piles. Most of the current design methods for driven piles do not provide specific recommendations for H piles. In order to evaluate the static load response of an H pile, fully instrumented axial load tests were performed on an H pile (HP?310×110) driven into a multilayered soil profile consisting of soils composed of various amounts of clay, silt and sand. The base of the H pile was embedded in a very dense nonplastic silt layer overlying a clay layer. This paper presents the results of the laboratory tests performed to characterize the soil profile and of the pile load tests. It also compares the measured pile resistances with those predicted with soil property- and in situ test-based methods.  相似文献   
93.
Polymer alloys and blends, whose major advantage is the potential of achieving a range of physical and mechanical properties, have continued to be a subject of interest over recent years. Addition of a block or graft copolymer, with chemically similar segments to those involved in the polymer blend considered, led to a variety of desirable properties. The copolymer added to the blend functioned to promote a homogeneous dispersion of the constituent phases and to enhance their mutual adhesion. Such agents that enable better dispersion in polymer blends are known as compatibilizers. In this study an attempt has been made to improve the compatibility in a polymer blend composed of two normally incompatible constituents, LDPE and PA6, by addition of a compatibilizer. The compatibilizer agent, ethylene vinyl acetate (EVA), was added to the polymer blend in ratios of 1, 5, and 10% by using a twin‐screw extruder. The effect of EVA on the crystallization of the polymer constituents was observed through DSC examinations. Furthermore, the control sample and all three blends of LDPE/PA6/EVA were subjected to examinations to obtain their yield and tensile strengths, elasticity modulus, percentage elongation, izod impact strength, hardness, and melt flow index. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1748–1754, 2001  相似文献   
94.
This study manifests the crucial change in the mechanical performances of Bi1.8Pb0.4Sr2MnxCa2.2Cu3.0Oy superconductor samples (x = 0, 0.03, 0.06, 0.15, 0.3 and 0.6) prepared by conventional solid-state reaction method by use of Vickers microhardness (Hv) measurements carried out at different applied loads, (0.245 N ≤ F ≤ 2.940 N). Load dependent microhardness, load independent microhardness, Young’s (elastic) modulus and yield strength values being account for the potential technological and industrial applications are evaluated from the hardness curves and compared with each other. It is found that the Hv, elastic modulus and yield strength obtained decrease (increase) with the enhancement of the applied load for the undoped (doped) samples. Surprisingly, the results of the Hv values illustrate that the samples doped with x = 0.03, 0.06, 0.15, 0.3 and 0.6 exhibit reverse indentation size effect (RISE) feature whereas the pure sample obeys indentation size effect (ISE) behavior. Furthermore, the experimental results are examined with the aid of the available methods such as Meyer’s law, proportional sample resistance model (PSR), elastic/plastic deformation (EPD), Hays–Kendall (HK) approach and indentation-induced cracking (IIC) model. The results inferred show that the hardness values calculated by PSR and EPD models are far from the values of the plateau region, meaning that these models are not adequate approaches to determine the real microhardness value of the Mn doped Bi-2223 materials. On the other hand, the HK approach is completely successful for the explanation of the ISE nature for the pure sample while the IIC model is obtained to be the best model to describe the hardness values of the doped materials exhibiting the RISE behavior. Additionally, the bulk porosity analysis for the samples reveals that the porosity increases monotonously with the increment in the Mn inclusions inserted in the Bi-2223 system, presenting the degradation of the grain connectivity.  相似文献   
95.
This study reports the effect of Lu addition on the microstructural and superconducting properties of YBa2LuxCu3O7?δ (Y123) superconducting samples with x = 0, 0.1, 0.3, 0.5 and 0.7 by means of X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), electron dispersive X-ray (EDX), electrical resistivity and transport critical current density (Jc) measurements. The samples prepared by the liquid ammonium nitrate and derivatives are exposed to various annealing time (20, 40 and 60 h) and temperature (950, 960 and 970 °C), and the best ambient for the sample fabrication is determined to be 970 °C for 20 h. Zero resistivity transition temperatures (Tc), critical current densities (Jc), variation of transition temperatures, hole-carrier concentration, grain size, lattice parameter, surface morphology, element distribution, crystallinity and resistivity (at room temperature) values of the bulk superconducting samples prepared at 970 °C for 20 h are compared with each other. Tc and Jc values of the samples are inferred from the dc resistivity and the critical current measurements, respectively. The results show that the Tc value of the pure sample is about 90.6 K while the sample doped with 0.1 wt% Lu has the maximum Tc value (92.5 K). However, beyond x = 0.1, the Tc value is observed to decrease toward to 83.5 K with increment in the Lu addition. Similarly, the Jc values measured are found to reduce from 142 to 76 A/cm2 with the addition. Moreover, XRD measurements show that both pure and Lu-doped samples exhibit the polycrystalline superconducting phase with the changing intensity of diffraction lines and contain Y123 and Y211 phase, confirming the incorporation of Lu atoms into the crystalline structure of the samples studied. At the same time, comparing of the XRD patterns of samples, the intensity ratio of the characteristic (110) and (013) peaks on the sample doped with 0.1 wt% Lu is more than that on the other samples prepared. Additionally, SEM images display that the sample doped with 0.1 wt% Lu obtains the best crystallinity, grain connectivity and largest grain size whereas the worst surface morphology is observed for the maximum doped sample (x = 0.7). Further, EDX results demonstrate that the Lu atoms doped are successfully introduced into the microstructure of the Y123 samples studied and the maximum Cu element level is observed for the sample doped with 0.1 wt%, explaining that why this sample obtains the best superconducting properties compared to others. According to all the results obtained, it is concluded that the 0.1 wt% Lu addition into the Y123 system improves the microstructural and superconducting properties of the samples studied.  相似文献   
96.
In this paper, an adaptive simulated annealing genetic algorithm is proposed to solve generation expansion planning of Turkey's power system. Least‐cost planning is a challenging optimization problem due to its large‐scale, long‐term, nonlinear, and discrete nature of power generation unit size. Genetic algorithms have been successfully applied during the past decade, but they show some limitations in large‐scale problems. In this study, simulated annealing is used instead of mutation operator to improve the genetic algorithm. The improved algorithm is applied to the power generation system with seven types of generating units and a 20‐year planning horizon. The planning horizon is divided into four equal periods. The new algorithm provides approximately 6.6 billion US$ (3.2%) cheaper solution than GA and also shows faster convergence. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
97.
In this paper, the need for knowledge-based simulation technique in shop floor scheduling are addressed. A prototype integrated system in Feed Mill manufacturing utilizing an integrated approach of Artificial Intelligence (AI) and simulation is discussed. The system is designed to support the production planner in scheduling and controlling the shop floor on real-time and on-line basis. System overview with the emphasis on knowledge-based simulation module is described.  相似文献   
98.
Interface crack problems in graded orthotropic media are considered using analytical and computational techniques. In the analytical formulation an interface crack between a graded orthotropic coating and a homogeneous orthotropic substrate is considered. The principal axes of orthotropy are assumed to be parallel and perpendicular to the crack plane. Mechanical properties of the medium are assumed to be continuous with discontinuous derivatives at the interface. The problem is formulated in terms of the averaged constants of plane orthotropic elasticity and reduced to a pair of singular integral equations which are solved numerically to compute the mixed mode stress intensity factors and the energy release rate. In the second part of the study, enriched finite elements are formulated and implemented for graded orthotropic materials. Comparisons of the finite element and analytical results show that enriched finite element technique is capable of producing highly accurate results for crack problems in graded orthotropic media. Finally, periodic interface cracking and the four point bending test for graded orthotropic solids are modeled using enriched finite elements and the results are briefly discussed.  相似文献   
99.

Aerodynamic shape optimization based on computational fluid dynamics (CFD) requires three steps: updating the geometry based on the design variables, updating the CFD surface mesh for the new geometry, and updating the CFD volume mesh based on the new surface mesh. While there are many tools available for the first and third steps, the methods available for the second step are insufficient for geometries that have intersecting components. For these geometries, the CFD surface mesh needs to be updated near component intersections to conform to the component geometries and the updated intersection curves. To address this need, we introduce a method that can deform the CFD surface mesh nodes near component intersections. The method can handle arbitrary design changes for each intersecting component as long as the geometric topology is unchanged. Furthermore, the method is suitable for gradient-based optimization because it smoothly deforms every CFD surface node without introducing topological changes in the CFD surface mesh. In this paper, we detail each step of the proposed method and visualize the range of design changes that can be achieved with this approach. Finally, we use the proposed method in an aerodynamic shape optimization problem to optimize the wing-body intersection of the DLR-F6 configuration. These results demonstrate the effectiveness of the proposed method in a high-fidelity design optimization framework. The method applies to both structured and unstructured CFD meshes and makes it possible to use computer-aided design and conceptual design geometry tools within high-fidelity design optimization.

  相似文献   
100.
In order to prepare an ideal mixture, the physical and chemical properties of the constituent polymers must be known in detail. Thus, selection of the polymers that will constitute the mixture and a thorough study of the mixing methods and the economic factors become important. A rigid plastic is toughened by dispersing a small amount of rubbery material (generally 5–20%) in the rigid plastic matrix. Such a mixture of plastics is characterized by its impact resistance. Among thermoplastics toughened in this way are polystyrene (PS), poly(vinyl chloride), poly(methyl methacrylate), polypropylene, polycarbonate, and nylons, and recently thermoset resins such as epoxies, unsaturated polyester resins, and polyamids. In this study PS and high‐density polyethylene polymers were mixed in various ratios. In order to increase the compatibility of the mixtures, 5, 7.5, and 10% SBS copolymer was also added. The mixing operation was conducted by using a twin‐screw extruder. The morphology and the compatibility of the mixtures were examined by using SEM and DSC techniques. Furthermore, the elastic modulus, yield and tensile strengths, percent elongation, Izod impact resistance, hardness, and melt flow index values of the polymer alloys of various ratios were determined. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2967–2975, 2002; DOI 10.1002/app.2325  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号