首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   742篇
  免费   21篇
  国内免费   3篇
电工技术   22篇
综合类   1篇
化学工业   145篇
金属工艺   7篇
机械仪表   34篇
建筑科学   35篇
能源动力   24篇
轻工业   24篇
水利工程   5篇
石油天然气   8篇
武器工业   1篇
无线电   61篇
一般工业技术   113篇
冶金工业   127篇
自动化技术   159篇
  2023年   14篇
  2022年   25篇
  2021年   25篇
  2020年   24篇
  2019年   25篇
  2018年   30篇
  2017年   19篇
  2016年   39篇
  2015年   26篇
  2014年   30篇
  2013年   48篇
  2012年   44篇
  2011年   57篇
  2010年   40篇
  2009年   35篇
  2008年   36篇
  2007年   28篇
  2006年   30篇
  2005年   21篇
  2004年   24篇
  2003年   19篇
  2002年   17篇
  2001年   23篇
  2000年   14篇
  1999年   12篇
  1998年   2篇
  1997年   7篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1986年   2篇
  1985年   2篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1966年   2篇
排序方式: 共有766条查询结果,搜索用时 15 毫秒
21.
Recently, the routing problem in vehicular ad hoc networks is one of the most vital research. Despite the variety of the proposed approaches and the development of communications technologies, the routing problem in VANET suffers from the high speed of vehicles and the repetitive failures in communications. In this paper, we adjusted the well‐known K‐medoids clustering algorithm to improve the network stability and to increase the lifetime of all established links. First, the number of clusters and the initial cluster heads will not be selected randomly as usual, but based on mathematical formula considering the environment size and the available transmission ranges. Then the assignment of nodes to clusters in both k‐medoids phases will be carried out according to several metrics including direction, relative speed, and proximity. To the best of our knowledge, our proposed model is the first that introduces the new metric named “node disconnection frequency.” This metric prevents nodes with volatile and suspicious behavior to be elected as a new CH. This screening ensures that the new CH retains its property as long as possible and thus increases the network stability. Empirical results confirm that in addition to the convergence speed that characterizes our adjusted K‐medoids clustering algorithm (AKCA), the proposed model achieves more stability and robustness when compared with most recent approaches designed for the same objective.  相似文献   
22.
23.
Fusarium graminearum, the main causal agent of Fusarium Head Blight (FHB), is one of the most damaging pathogens in wheat. Because of the complex organization of wheat resistance to FHB, this pathosystem represents a relevant model to elucidate the molecular mechanisms underlying plant susceptibility and to identify their main drivers, the pathogen’s effectors. Although the F. graminearum catalog of effectors has been well characterized at the genome scale, in planta studies are needed to confirm their effective accumulation in host tissues and to identify their role during the infection process. Taking advantage of the genetic variability from both species, a RNAseq-based profiling of gene expression was performed during an infection time course using an aggressive F. graminearum strain facing five wheat cultivars of contrasting susceptibility as well as using three strains of contrasting aggressiveness infecting a single susceptible host. Genes coding for secreted proteins and exhibiting significant expression changes along infection progress were selected to identify the effector gene candidates. During its interaction with the five wheat cultivars, 476 effector genes were expressed by the aggressive strain, among which 91% were found in all the infected hosts. Considering three different strains infecting a single susceptible host, 761 effector genes were identified, among which 90% were systematically expressed in the three strains. We revealed a robust F. graminearum core effectome of 357 genes expressed in all the hosts and by all the strains that exhibited conserved expression patterns over time. Several wheat compartments were predicted to be targeted by these putative effectors including apoplast, nucleus, chloroplast and mitochondria. Taken together, our results shed light on a highly conserved parasite strategy. They led to the identification of reliable key fungal genes putatively involved in wheat susceptibility to F. graminearum, and provided valuable information about their putative targets.  相似文献   
24.
Extending the resolution and spatial proximity of lithographic patterning below critical dimensions of 20 nm remains a key challenge with very-large-scale integration, especially if the persistent scaling of silicon electronic devices is sustained. One approach, which relies upon the directed self-assembly of block copolymers by chemical-epitaxy, is capable of achieving high density 1?:?1 patterning with critical dimensions approaching 5 nm. Herein, we outline an integration-favourable strategy for fabricating high areal density arrays of aligned silicon nanowires by directed self-assembly of a PS-b-PMMA block copolymer nanopatterns with a L(0) (pitch) of 42 nm, on chemically pre-patterned surfaces. Parallel arrays (5 × 10(6) wires per cm) of uni-directional and isolated silicon nanowires on insulator substrates with critical dimension ranging from 15 to 19 nm were fabricated by using precision plasma etch processes; with each stage monitored by electron microscopy. This step-by-step approach provides detailed information on interfacial oxide formation at the device silicon layer, the polystyrene profile during plasma etching, final critical dimension uniformity and line edge roughness variation nanowire during processing. The resulting silicon-nanowire array devices exhibit Schottky-type behaviour and a clear field-effect. The measured values for resistivity and specific contact resistance were ((2.6 ± 1.2) × 10(5)Ωcm) and ((240 ± 80) Ωcm(2)) respectively. These values are typical for intrinsic (un-doped) silicon when contacted by high work function metal albeit counterintuitive as the resistivity of the starting wafer (~10 Ωcm) is 4 orders of magnitude lower. In essence, the nanowires are so small and consist of so few atoms, that statistically, at the original doping level each nanowire contains less than a single dopant atom and consequently exhibits the electrical behaviour of the un-doped host material. Moreover this indicates that the processing successfully avoided unintentional doping. Therefore our approach permits tuning of the device steps to contact the nanowires functionality through careful selection of the initial bulk starting material and/or by means of post processing steps e.g. thermal annealing of metal contacts to produce high performance devices. We envision that such a controllable process, combined with the precision patterning of the aligned block copolymer nanopatterns, could prolong the scaling of nanoelectronics and potentially enable the fabrication of dense, parallel arrays of multi-gate field effect transistors.  相似文献   
25.
Thermal degradation of Athabasca oil sands, bitumen, and its fractions have been investigated in N2and in air, at 25–600 °C and at pressures up to 6.9 MPa, using thermogravimetry (TG) and high pressure differential scanning calorimetry (PDSC). These conditions are likely to occur during in-situ recovery of bitumen by underground combustion processes. Two regions of weight loss are detected using both gases. The endothermic low temperature volatilization reactions (150–400 °C) absorbed +26 mJ mg?1 for oil sand to +2319 mJ mg?1 for medium oil. The heats of reaction for high-temperature cracking and volatilization reactions (400–550 °C) were similar. The heats of reaction for the low-temperature oxidation reactions (150–375 °C) were ?405 mJ mg?1 for oil sand to ?30200mJ mg?1 for medium oil. Values for the high-temperature oxidation reactions (400–550 °C) were slightly higher. Increasing the pressure of nitrogen and air caused an increase in the endothermicity and exothermicity of the respective reactions.  相似文献   
26.
27.
A side-chain type benzoxazine-functional cellulose has been developed using click chemistry via the reaction of ethynyl-monofunctional benzoxazine monomer and azide-functional cellulose. The synthesis, crosslinking, and thermal properties of the benzoxazine-functional cellulose are studied by NMR, FTIR, DSC, and TGA. The crosslinking reaction of the benzoxazine side-chain unusually takes place at low-temperatures in comparison to an ordinary benzoxazine resins. Upon crosslinking, the polymer shows high char yield of 40%, which is a marked improvement from a mere 4% of the unfunctionalized cellulose. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   
28.
Soybean [Glycine max (L.) Merr.] oil with high oleic acid (>75%) has increased oxidative stability and health benefits that are valuable for food, fuel, and industrial products. It has been determined that two naturally occurring mutations in genes FAD2-1A and FAD2-1B can combine to produce high oleic soybeans. The objective of this study was to test the effect of these mutant alleles on seed yield and oil and protein concentration. Molecular markers assisted in the creation of a population of 48 BC3F2:4 lines (93.75% expected genome commonality). Each line was classified into one of four genotypic groups where both FAD2-1A and FAD2-1B genes were either homozygous wild type or mutant, respectively. Twelve lines for each genotypic group were evaluated in three replications at six locations across Tennessee. There was no seed yield difference between the high oleic genotypic group and the other groups (P < 0.05). On the other hand, there were differences in fatty acid profiles and oil and protein concentrations. In combination, the mutant FAD2-1A and FAD2-1B alleles produced a mean of 803.1 g kg−1 oleic acid. This is, on average, approximately 500 g kg−1 more oleic acid compared to soybean lines with only one mutant FAD2-1 allele. The high oleic double mutant group had more total oil (228.0 g kg−1) and protein (401.0 g kg−1) compared to all other genotypic groups (P < 0.05). Overall, this specific combination of mutant FAD2-1A and FAD2-1B alleles appears to generate conventional high oleic soybeans without a yield drag.  相似文献   
29.
A series of symmetrical optical brighteners based on stilbene-oxadiazole derivatives were prepared by the simple synthetic route of a condensation reaction between 4,4′-dicarboxystilbene and N,N′-carbonyldiimidazole reagent, forming stilbene 4,4′-ethene-1,2-diyldibenzohydrazide as a key intermediate. The obtained compounds were characterised by analysis of nuclear magnetic resonance, mass spectrometry, and elemental analysis data. The absorption maximum wavelength, fluorescence emission wavelength, and fluorescence quantum yield were measured in N,N-dimethylformamide solution at room temperature, and the fluorescence properties of the prepared compounds in the solid state were observed and measured. The compounds exhibited bluish and greenish fluorescence emission, with the fluorescence quantum yield in the range 0.2–0.8; the effects of substituents on the emission spectra of these compounds were interpreted. The prepared compounds were applied as optical brighteners to polyester and polyamide-6 fabrics at various concentrations, and their CIE whiteness index and fastness properties were studied.  相似文献   
30.
The rotational isomeric state model was employed to provide a better understanding of the role of chain microstructure on the conformational behavior of homogeneous ethylene-1-olefin copolymers. The chain microstructure was assembled in accordance with the copolymerization theory using a set of conditional probabilities in direct relation to the reactivity ratios and the feed compositions of the comonomers. The catalytic inversion influence on the tacticity of the polymeric microstructure was also taken into account by considering the replication probability during the Monte Carlo simulation. Statistical weight factors of the rotational isomeric states were evaluated using molecular dynamics runs of the various homopolymers according to the earlier work of Mattice et al. Probability distribution surfaces constructed by the integration of the molecular dynamics trajectories of sufficient length to sample all of the conformational space indicated the increase of the probability of g±t joint states at the expense of g±g± pairs with the increase in the side chain length of the 1-olefin comonomers. It was also indicated that this behavior had a maximum around poly(1-butene)/poly(1-hexene) with an apparent reversal in case of poly(1-octene) due to the side chain crowding, which forces the chain to favor more of the g±g± joint states. The characteristic ratios calculated for the copolymers on the basis of the rotational isomeric state model also indicated the increased extension of the polymer backbone with the increase in the side chain length. The lower characteristic ratio calculated for the octene polymers may, in fact, explain the experimental observation that poly(1-octene) has a lower melting point than those of other poly(1-olefin)s of shorter side chains. A complete account of the role of tacticity on the characteristic ratio and the radial distribution function is also given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号