首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1155篇
  免费   23篇
  国内免费   4篇
电工技术   51篇
综合类   2篇
化学工业   325篇
金属工艺   78篇
机械仪表   48篇
建筑科学   28篇
能源动力   74篇
轻工业   47篇
石油天然气   2篇
无线电   69篇
一般工业技术   208篇
冶金工业   82篇
原子能技术   47篇
自动化技术   121篇
  2022年   7篇
  2021年   16篇
  2020年   9篇
  2019年   10篇
  2018年   22篇
  2017年   14篇
  2016年   29篇
  2015年   8篇
  2014年   26篇
  2013年   76篇
  2012年   40篇
  2011年   64篇
  2010年   61篇
  2009年   58篇
  2008年   55篇
  2007年   47篇
  2006年   53篇
  2005年   33篇
  2004年   39篇
  2003年   44篇
  2002年   39篇
  2001年   30篇
  2000年   18篇
  1999年   22篇
  1998年   34篇
  1997年   29篇
  1996年   21篇
  1995年   26篇
  1994年   22篇
  1993年   14篇
  1992年   11篇
  1991年   14篇
  1990年   6篇
  1989年   9篇
  1988年   9篇
  1987年   10篇
  1986年   13篇
  1985年   13篇
  1984年   15篇
  1983年   12篇
  1982年   18篇
  1981年   9篇
  1980年   20篇
  1979年   12篇
  1978年   7篇
  1977年   7篇
  1976年   6篇
  1975年   5篇
  1973年   5篇
  1970年   3篇
排序方式: 共有1182条查询结果,搜索用时 31 毫秒
51.
We evaluated the effects of seven mushroom extracts (Grifola frondosa, Pholiota nameko, Panellus serotinus, Hypsizygus marmoreus, Pleurotus cornucopiae, Armillaria mellea, and Flammulina velutipes) on cytotoxic activity and cytokine production of lamina propria leukocytes (LPLs) isolated from rat small (S) and large (L) intestinal mucosa. Boiling water extracts from seven species of mushrooms showed no direct cytotoxicity against the YAC-1 target cells. However, prominent increases of cytotoxicity were observed in S- and L-LPLs co-cultured with P. serotinus extract. Cytokine production (TNFα, IFNγ, IL-12 p70, and IL-4) of S- and L-LPLs was stimulated in response to P. cornucopiae extract. Mushroom extracts contributed to target cell adhesion and/or cytokine production in the effector cells. The promotion of cytotoxic activity in S- and L-LPLs was not necessarily related to β-glucan content of the mushroom.  相似文献   
52.
The preparation and characterization of a biobased electromagnetic absorbing composites derived from natural lacquer as a renewable resource with microwave‐absorption fillers, including Ni–Zn ferrite and carbonyl iron (CI) as magnetic metals and soot and carbon nanotube (CNT) as carbon materials, were investigated in terms of the gel content, hardness, drying properties, and electromagnetic absorption properties. Interestingly, composites with ferrite and CI contained up to 320 and 550 wt %, respectively, of these compounds. This quite high loading capacity of the metal fillers in a natural‐lacquer base could have been due to the high compatibility between the filler and the natural lacquer; this indicated that the natural lacquer worked as a binder for these metals. The morphology of the biobased composite was characterized by scanning electron microscopy. The electromagnetic absorption properties of composites were characterized in the frequency range from 0.05 and 20 GHz by the reflection loss (RL) measurement method in terms of the kind of fillers and filler loading. The natural lacquer did not affect the absorption properties of the fillers. Biobased composites showed over 99% electromagnetic absorption in the frequency range 3.0–4.0 GHz for 280 wt % ferrite and 8.9–9.7 GHz for 200 wt % CI. Conversely, 10 and 20 wt % soot exhibited good performance (RL < ?20 dB) between 16.5 and 17.3 and between 8.8 and 9.2 GHz, respectively. The areas with RL values of less than ?20 dB of the CNT composites were 10.4–11.0 GHz for 5 wt % and 14.6–15.2 GHz for 10 wt %. Hence, natural lacquer can be used as a binder material for electromagnetic absorption composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44131.  相似文献   
53.
54.
In many industries, there are applications that require the joining of stainless steel and copper components; therefore, the welding of dissimilar stainless steel/copper joints is a common process. For this investigation, the optimal brazing conditions and suitable filler metals for laser brazing of stainless steel/copper lap joints were studied. Tensile shear force increases with increases in the laser spot diameter or in the laser irradiation angle, which is associated with increased bonding width; however, as bonding width approaches 2 mm, tensile shear force reaches a saturated value due to fracturing at the HAZ of the Cu base plate. In order to obtain joints with high tensile shear strength, laser brazing was optimized by using Cu–Si-based filler metal under the following conditions: laser power, 4 kW; spot diameter, 3 mm; laser irradiation angle, 80°; irradiation position shift, 0.6 mm; brazing speed, 0.30 m/min; and filler metal feed speed, 0.30 min. Concerning filler metals, it was found that the Ni–Cu type showed relatively large tensile shear force even at high welding speeds in comparison with those of the Cu–Si, Cu, Cu–Ni, Ni–Cu and Ni types, respectively.  相似文献   
55.
The generalized scaling law is based on the concept of two-stage scaling and allows currently available centrifuge facilities to model a large-scale prototype expanding over the spatial dimension ranging from 30 m or larger subject to earthquake motions. This paper presents the results of investigation on the applicability of the generalized scaling law to the fully nonlinear regime of soil-structure system with the induced strain level of 10% in the order of magnitude. The centrifuge model tests performed in this study under the modeling of models scheme consist of a pile model embedded in a inclined ground subject to liquefaction-induced lateral spreading. Four different centrifugal accelerations ranging from 13g to 50g are used whereas the actual size of the physical model is kept constant with an overall scaling factor of 1/100. The models are exposed to tapered sinusoidal input accelerations of frequency 0.59 Hz and amplitude 3.0 m/s2 in prototype scale, and the results are compared in terms of prototype by applying the generalized scaling law. As for the response of the ground during shaking, essentially identical accelerations and excess pore water pressures are recorded for all cases, while the lateral displacement shows a variation ranging from 5% to 9% in terms of shear strain due to a slight variation in experimental conditions (e.g., input peak acceleration, achieved density distribution). Practically the same responses are measured among the cases in the dissipation phase of excess pore water pressure. With regard to pile behavior, nearly identical responses for the lateral displacements and bending moments are obtained for all cases both during and after shaking. These results demonstrated that the generalized scaling law is applicable to the fully nonlinear regime of soil-structure system subject to the cumulative shear strain in the order of 10% due to cyclic mobility of sands during earthquakes.  相似文献   
56.
Zhong  Xiangyu  Hamdani  Fethi  Xu  Jian  Shoji  Tetsuo  Tatsuki  Tadashi  Morii  Jun  Sasaki  Wakako  Ishii  Yasunori 《Oxidation of Metals》2019,91(5-6):705-727
Oxidation of Metals - Oxide scale control is one of the critical maintenance issues in fossil fuel power plant. Hence, the water treatment of the feed water has been changed from all-volatile...  相似文献   
57.
Surface structures of iron–phosphate glasses were examined using X‐ray photoelectron spectroscopy (XPS). Cr2O3, CoO, and Al2O3 were introduced to the glass by the replacement of a part of Fe2O3, and the simulated fission products are also added. The obtained glasses showed high chemical durabilities by MCC‐1 test. In situ high‐temperature and room‐temperature XPS measurements were conducted on the polished sample surfaces and also those after 1‐week chemical durability test. Unique trends were observed in XPS spectra on heating and after the chemical durability test, respectively. Nature of the glass surface of iron–phosphate glasses was explained from the point of view of surface energy, and the origin of high chemical durability and the effect of chromium ions were discussed based on the changes on surface composition and valence states of transition‐metal ions.  相似文献   
58.
The electric potential, copper ion flux, and ammonia flux across the interface of cuprammonium cellulose solution (CCS) and various 1.0 equiv/Lelectrolyte solutions (ES) at 25°C were measured. The interfacial potentials were strongly negative (–10 to –35 mV) with H2SO4, HCI, and (NH4)2SO4 as ES, weakly positive (6 to 8 mV) with NaCl, KCl, LiCl, CsCL, and RbCl as ES, and strongly positive (19 to 34 mV) with KOH and NaOH as ES, generally showing values similar to the diffusion potentials for electrolyte solutions comprising ions of the same absolute charge. The ammonia flux (about 1 X 10-4 mol/cm2/s) was relatively unaffected by the interfacial potential, but the copper ion flux was clearly dependent on it. These results, together with the observed rates of CCS coagulation, indicate that the mechanism of the coagulation was largely determined by the interfacial potential, with strongly negative potential gradients accelerating the Cu2+ flux into the ES and CCS coagulation proceeding rapidly by Cu2+ removal, strongly positive potential gradients accelerating the Na+ flux into the CCS and coagulation proceeding rapidly via the formation of cellulose-Na+ complex, and the absence of a strong potential gradient capable of accelerating the ion flux resulting in slow coagulation by ammonia removal. It may therefore be possible to control the interfacial potential and the ion flux by the ES composition, and thus to influence the structure of regenerated cellulosic fibers and membranes. © 1996 John Wiley & Sons, Inc.  相似文献   
59.
To find an effective laser source to ignite energetic materials, the absorption spectra of some energetic materials are obtained by means of a photoacoustic spectroscopy (PAS). In this experiment, PAS covers the wavelength region of 400 nm-1600 nm in which no other conventional method can take absorption spectra for powdered energetic materials. Photoacoustic spectra of 18 energetic materials are reported. In general, energetic materials tested showed peaks in 600 nm–800 nm and 1400 nm–1600 nm ranges. It is found that the energy required to initiate explosives in the case of ruby laser initiation were correlated with their photoacoustic signal intensities.  相似文献   
60.
Heterocyclic amines get entry into human body mainly through ingestion of pan‐fried meats cooked at high temperatures. Exposure of the gastrointestinal tract (GIT) to ingested xenobiotics prior to delivery to the liver may lead to metabolic activation, which may explain the high incidence of GIT carcinogenesis. Therefore, this study investigated the mutagenic activation of 2 heterocyclic amines, 2‐aminoanthracene (2‐AA) and 3‐amino‐1‐methyl‐5H‐prydo[4,3‐b]indole (Trp‐P‐2), in the GIT of rats. In addition, the constitutive mRNA expression profiles of xenobiotic‐metabolizing enzymes (XMEs) in the GIT of rats were examined. Metabolic activation of 2‐AA was detected in all GIT tissues except the duodenum and rectum, and it was detected at high levels in the ileum and cecum. Furthermore, we revealed high metabolic activation of 2‐AA and Trp‐P‐2 in the jejunum. The mRNA expression of phase I and II enzymes in rat GIT corresponded with their mutagenic activation ability. In conclusion, our results suggest that different expression levels of XME among GIT tissues may contribute to the tissue‐specific differences in metabolic activation of xenobiotics such as heterocyclic amines in rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号