Brown adipose tissue (BAT) expresses uncoupling protein-1 (UCP1), which enables energy to be exerted towards needed thermogenesis. Beige adipocytes are precursor cells interspersed among white adipose tissue (WAT) that possess similar UCP1 activity and capacity for thermogenesis. The raccoon dog (Nyctereutes procyonoides) is a canid species that utilizes seasonal obesity to survive periods of food shortage in climate zones with cold winters. The potential to recruit a part of the abundant WAT storages as beige adipocytes for UCP1-dependent thermogenesis was investigated in vitro by treating raccoon dog adipocytes with different browning inducing factors. In vivo positron emission tomography/computed tomography (PET/CT) imaging with the glucose analog 18F-FDG showed that BAT was not detected in the adult raccoon dog during the winter season. In addition, UCP1 expression was not changed in response to chronic treatments with browning inducing factors in adipocyte cultures. Our results demonstrated that most likely the raccoon dog endures cold weather without the induction of BAT or recruitment of beige adipocytes for heat production. Its thick fur coat, insulating fat, and muscle shivering seem to provide the adequate heat needed for surviving the winter. 相似文献
The objective of this study was to evaluate the feasibility of combined modular processes to selectively remove Sb from mine-impacted waters in an Arctic environment in order to fulfil local environmental criteria for discharged waters. Novel ion exchange, selective extraction and ultrafiltration, electrocoagulation, and dissolved air flotation technologies were investigated, individually or in combination, from the laboratory- to pilot-demonstration scale. Laboratory-scale testing using Fe2(SO4)3 precipitation, ion exchange resin, selective ion extraction and ultrafiltration, and electrocoagulation with or without subsequent dissolved air flotation indicated that any of the methods are potentially applicable to Sb removal from mine water. The observed differences between Sb and As removal efficiency by ion exchange resin illustrated the need for Sb-specific removal and recovery technologies. Techno-economic analyses showed that treatment of mine water using electrocoagulation-dissolved air flotation yields the lowest comparative life-cycle cost of examined technologies. Results demonstrated increased Sb attenuation efficiency using either electrocoagulation-dissolved air flotation or selective extraction and ultrafiltration, even when treating only 50% of the mine-impacted water, compared with conventional Fe2(SO4)3 precipitation from mine water. Additional investigation is necessary to characterize the long-term stability of the mineral phases in Sb-containing solid residues and to inform selection of Sb recovery methods and utilisation or final disposal options for the residual materials.
The aim of this study was to examine the impacts of different minimum top diameters of roundwood on the accumulation of logging residue in first thinnings of Scots pine and Norway spruce. The aim was also to compare estimates of residue accumulation calculated by tree-specific models with field measurements from thinnings. Felling experiments were performed in young pine and spruce stands to evaluate the model calculations. The felling was performed by a harvester with a single-grip harvester head. Sample trees were felled and processed to a minimum diameter of 12, 10, 8 and 6 cm and the delimbed branches and stem wood between these cutting points were weighed. The mean relative masses of the tree tops of spruce were nearly doubled with each increment of 2 cm in the top diameter. Respectively in pine, the mean relative tree top mass was increased by 50-60% when the top diameter was increased by 2 cm. The mass of total residue (tree top and all delimbed branches) was similarly increased, but the differences were not as large. Compared to pine, smaller variation in the crown mass of the spruce sample resulted in a more accurate model prediction of the mass of tree tops and total residue. The results of this study suggest that the biomass quantity and distribution of a small amount of trees cannot be predicted very reliably, but when these results are generalized to stand-level, the model predictions can be improved to a practicable level. 相似文献
At specific situations, workers need to approach very close to the transmitting base station antennas. In this study, occupational exposure to RF fields from base station antennas was assessed at several rooftops. The measurements were carried out by mapping the power densities around the antennas. The results were compared with the ICNIRP guidelines. The results indicate that the reference levels for workers and the general public may be exceeded in front of the transmitting antenna at distances up to 1 and 2 m, respectively. 相似文献
While cyber–physical system sciences are developing methods for studying reliability that span domains such as mechanics, electronics and control, there remains a lack of methods for investigating the impact of the environment on the system. External conditions such as flooding, fire or toxic gas may damage equipment and failing to foresee such possibilities will result in invalid worst-case estimates of the safety and reliability of the system. Even if single component failures are anticipated, abnormal environmental conditions may result in common cause failures that cripple the system. This paper proposes a framework for modeling interactions between a cyber–physical system and its environment. The framework is limited to environments consisting of spaces with clear physical boundaries, such as power plants, buildings, mines and urban underground infrastructures. The purpose of the framework is to support simulation-based risk analysis of an initiating event such as an equipment failure or flooding. The functional failure identification and propagation (FFIP) framework is extended for this purpose, so that the simulation is able to detect component failures arising from abnormal environmental conditions and vice versa: Flooding could be caused by a failure in a pipe or valve component. As abnormal flow states propagate through the system and its environment, the goal of the simulation is to identify the system-wide cumulative effect of the initiating event and any related common cause failure scenario. FFIP determines this effect in terms of degradation or loss of the functionality of the system. The method is demonstrated with a nuclear reactor’s redundant coolant supply system. 相似文献
The ability of many bacteria to adapt to stressful conditions may later protect them against the same type of stress (specific adaptive response) or different types of stresses (multiple adaptive response, also termed cross-protection). Arcobacter butzleri and Campylobacter jejuni are close phylogenetic relatives that occur in many foods of animal origin and have been linked with human illness (mainly diarrhoea). In the present study, sublethal stress adaptation temperatures (48 °C and 10 °C) and mild and lethal acid conditions (pH 5.0 and pH 4.0) were determined for A. butzleri and C. jejuni. In addition, it was evaluated whether these sublethal stress adaptations cause specific adaptive responses or cross-protection against subsequent mild or lethal acid stresses in these bacteria. The studies were conducted in broth adjusted to the different conditions and the results were determined by the dilution series plating method. It was shown that heat stress adapted A. butzleri (incubated for 2 h at 48 °C) were significantly more resistant to subsequent lethal acid stress (pH 4.0) than non-adapted cells at the 1 h time-point (p < 0.01 in Wilcoxon rank sum test). No specific adaptive responses against the stresses in A. butzleri or C. jejuni and no cross-protection in C. jejuni were found. The ability of heat stressed A. butzleri to tolerate later lethal acid conditions should be taken into account when designing new food decontamination and processing strategies. 相似文献
Fish assemblages in large rivers are governed by spatio‐temporal changes in habitat conditions, which must be accounted for when designing effective monitoring programmes. Using boat electrofishing surveys, this study contrasts species richness, catch per unit effort (CPUE), total biomass, and spatial distribution of fish species in the Saint John River, New Brunswick, Canada, sampled during different diel periods (day and night) and macrohabitats (hydropower regulated river and its reservoir) in the vicinity of the Mactaquac (hydropower) Generating Station. Taxa richness, total CPUE, and total biomass were significantly higher during night surveys, resulting in marked differences in community composition between the two diel periods. Furthermore, the magnitude of diel differences in catch rate was more pronounced in lentic than in lotic macrohabitats. The required sampling effort (i.e., number of sites) to increase accuracy and precision of CPUE estimates varied widely between fish species, diel periods, and macrohabitats and ranged from 15 to 185 electrofishing sites. Determining a correction factor to contrast accuracy and precision of day‐ with night‐time surveys provide useful insights to improve the design of long‐term monitoring programmes for fish communities in large rivers. The study also shows the importance of multihabitat surveys to detect differences in the magnitude of diel changes in fish community metrics. 相似文献