首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1613篇
  免费   85篇
  国内免费   6篇
电工技术   21篇
综合类   12篇
化学工业   533篇
金属工艺   35篇
机械仪表   36篇
建筑科学   119篇
矿业工程   2篇
能源动力   50篇
轻工业   137篇
水利工程   3篇
石油天然气   3篇
无线电   108篇
一般工业技术   317篇
冶金工业   78篇
原子能技术   15篇
自动化技术   235篇
  2023年   19篇
  2022年   36篇
  2021年   44篇
  2020年   28篇
  2019年   39篇
  2018年   37篇
  2017年   30篇
  2016年   56篇
  2015年   63篇
  2014年   65篇
  2013年   78篇
  2012年   81篇
  2011年   123篇
  2010年   87篇
  2009年   92篇
  2008年   68篇
  2007年   84篇
  2006年   55篇
  2005年   62篇
  2004年   54篇
  2003年   43篇
  2002年   45篇
  2001年   21篇
  2000年   27篇
  1999年   30篇
  1998年   34篇
  1997年   20篇
  1996年   25篇
  1995年   18篇
  1994年   12篇
  1993年   16篇
  1992年   14篇
  1991年   23篇
  1990年   17篇
  1989年   13篇
  1988年   13篇
  1987年   13篇
  1986年   15篇
  1985年   7篇
  1984年   10篇
  1983年   7篇
  1982年   9篇
  1981年   12篇
  1979年   5篇
  1978年   5篇
  1977年   7篇
  1976年   9篇
  1975年   5篇
  1972年   4篇
  1969年   4篇
排序方式: 共有1704条查询结果,搜索用时 15 毫秒
51.
In this work, an input reconstruction scheme for detecting and isolating sensor, actuator, and process faults is proposed. The scheme uses model‐based and statistical‐based FDI methods, which yields an improved analysis of abnormal operation conditions in chemical processes. The main advantage of the proposed approach over existing works lies in the reconstruction of system inputs and the subsequent estimation of fault signatures. This advantage is demonstrated through simulation examples and the analysis of recorded process data from a reactive batch distillation column. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   
52.
A flexible method is presented, which enables the fabrication of porous as well as dense Si3N4/nano-SiC components by using Si3N4 powder and a preceramic polymer (polycarbosilazane) as alternative ceramic forming binder. The SiCN polymer benefits consolidation as well as shaping of the green body and partially fills the interstices between the Si3N4 particles. Cross-linking of the precursor at 300 °C increases the mechanical stability of the green bodies and facilitates near net shape machining. At first, pyrolysis leads to porous ceramic bodies. Finally, subsequent gas pressure sintering results in dense Si3N4/nano-SiC ceramics. Due to the high ceramic yield of the polycarbosilazane binder, the shrinkage during sintering is significantly reduced from 20 to 15 lin.%. Investigations of the sintered ceramics reveal, that the microstructure of the Si3N4 ceramic contains approx. 6 vol.% nano-scaled SiC segregations, which are located both at the grain boundaries and as inclusions in the Si3N4 grains.  相似文献   
53.
A series of well‐defined polymer–drug conjugates were prepared in order to modify the physical properties of a known cytotoxic drug, 7‐ethyl‐10‐hydroxycamptothecin (SN‐38), the active metabolite of irinotecan (CPT‐11). Reversible addition–fragmentation chain transfer (RAFT) polymerisation was used to covalently and site‐specifically append a defined N‐(2‐hydroxypropyl)methacrylamide (HPMA) polymer to SN‐38 using a graft‐from process. These poly‐HPMA–SN‐38 conjugates displayed excellent aqueous solubility and stability, whilst retaining the cytotoxic activity of the parent SN‐38. In vitro co‐culture assays containing both cancer and noncancer cell lines demonstrated the specificity of RAFT‐derived poly‐HPMA–SN‐38 conjugates for cancerous cells. The concept of post‐optimisation modification of small‐molecule drugs through a graft‐from polymer conjugation method is introduced.  相似文献   
54.
The development of innovative metal catalysis for selective bond formation is an important task in organic chemistry. The group 13 metal indium is appealing for catalysis because indium-based reagents are minimally toxic, selective, and tolerant toward various functional groups. Among elements in this group, the most stable oxidation state is typically +3, but in molecules with larger group 13 atoms, the chemistry of the +1 oxidation state is also important. The use of indium(III) compounds in organic synthesis has been well-established as Lewis acid catalysts including asymmetric versions thereof. In contrast, only sporadic examples of the use of indium(I) as a stoichiometric reagent have been reported: to the best of our knowledge, our investigations represent the first synthetic method that uses a catalytic amount of indium(I). Depending on the nature of the ligand or the counteranion to which it is coordinated, indium(I) can act as both a Lewis acid and a Lewis base because it has both vacant p orbitals and a lone pair of electrons. This potential ambiphilicity may offer unique reactivity and unusual selectivity in synthesis and may have significant implications for catalysis, particularly for dual catalytic processes. We envisioned that indium(I) could be employed as a metallic Lewis base catalyst to activate Lewis acidic boron-based pronucleophiles for selective bond formation with suitable electrophiles. Alternatively, indium(I) could serve as an ambiphilic catalyst that activates both reagents at a single center. In this Account, we describe the development of low-oxidation state indium catalysts for carbon-carbon bond formation between boron-based pronucleophiles and various electrophiles. We discovered that indium(I) iodide was an excellent catalyst for α-selective allylations of C(sp(2)) electrophiles such as ketones and hydrazones. Using a combination of this low-oxidation state indium compound and a chiral semicorrin ligand, we developed catalytic highly enantioselective allylation, crotylation, and α-chloroallylation reactions of hydrazones. These transformations proceeded with rare constitutional selectivities and remarkable diastereoselectivities. Furthermore, indium(I) triflate served as the most effective catalyst for allylations and propargylations of C(sp(3)) electrophiles such as O,O-acetals, N,O-aminals, and ethers, and we applied this methodology to carbohydrate chemistry. In addition, a catalyst system composed of indium(I) chloride and a chiral silver BINOL-phosphate facilitated the highly enantioselective allylation and allenylation of N,O-aminals. Overall, these discoveries demonstrate the versatility, efficiency, and sensitivity of low-oxidation state indium catalysts in organic synthesis.  相似文献   
55.
56.
Summary: The dicationic [(dppp)Pd(NCCH3)2](BF4)2 catalyst (dppp = 1,3‐bis(diphenylphosphino)propane) was applied in a liquid monomer, two phase process for the CO/propene copolymerization reaction. For the first time it was possible to synthesize propene/CO copolymers with an activity up to 7 500 g/(mol · h) and molecular weights of 500 000 g/mol. Activities up to 40 000 g/(mol · h) could be obtained with the use of the unsymmetric catalyst [(CF3‐dppp)Pd(NCCH3)](BF4)2 (CF3‐dppp = 1‐diphenylphosphino‐3‐bis[3,5‐di(trifluormethyl)phenyl]phosphinopropane) in homogeneous liquid propene solution.

Granules found after copolymerization.  相似文献   

57.
It was found that prolonged high-energy ball-milling of Hilgenstokite (tetracalcium phosphate, TTCP) resulted in a decrease in both particle and crystallite size, leading to a mechanical activation of the compound. This mechanically activated material demonstrated a high reactivity such that, in contrast to highly crystalline TTCP, a setting reaction with water to nanocrystalline hydroxyapatite (HA) and Ca(OH)2 could be achieved at 37°C. However, crystalline TTCP is practically unreactive at physiologic temperatures because of the formation of a thin HA layer on the particle surface preventing further reaction.  相似文献   
58.
Aero-engines operating in dust-laden environments often encounter a lot of dust/sand that causes a severe problem to the TBCs by means of erosion. As the turbine entry temperatures are rising, molten sand is also a big concern to the life-time of TBCs.This paper deals with the TBC behavior under the combined influence of erosion and corrosion attack. Variations in TBC morphology, CMAS infiltration time and CMAS composition and their influence on the erosion resistance at room temperature were investigated. Two different EB-PVD 7YSZ morphologies consisting of a different porosity arrangement were tested in the erosion/corrosion regime. The more ‘Feathery’ structure has a better resistance to erosion compared to a more columnar ‘Normal’ structure, which leads to less degradation of the TBC. However, under the influence of CMAS infiltration the effect was found to be reversed. In general, CMAS-infiltrated EB-PVD TBCs exhibit a higher erosion resistance than the non-infiltrated ones.  相似文献   
59.
For 64Cu radiolabeling of biomolecules to be used as in vivo positron emission tomography (PET) imaging agents, various chelators are commonly applied. It has not yet been determined which of the most potent chelators—NODA‐GA ((1,4,7‐triazacyclononane‐4,7‐diyl)diacetic acid‐1‐glutaric acid), CB‐TE2A (2,2′‐(1,4,8,11‐tetraazabicyclo[6.6.2]hexadecane‐4,11‐diyl)diacetic acid), or CB‐TE1A‐GA (1,4,8,11‐tetraazabicyclo[6.6.2]hexadecane‐4,11‐diyl‐8‐acetic acid‐1‐glutaric acid)—forms the most stable complexes resulting in PET images of highest quality. We determined the 64Cu complex stabilities for these three chelators by a combination of complex challenge and an in vivo approach. For this purpose, bioconjugates of the chelating agents with the gastrin‐releasing peptide receptor (GRPR)‐affine peptide PESIN and an integrin αvβ3‐affine c(RGDfC) tetramer were synthesized and radiolabeled with 64Cu in excellent yields and specific activities. The 64Cu‐labeled biomolecules were evaluated for their complex stabilities in vitro by conducting a challenge experiment with the respective other chelators as challengers. The in vivo stabilities of the complexes were also determined, showing the highest stability for the 64Cu–CB‐TE1A‐GA complex in both experimental setups. Therefore, CB‐TE1A‐GA is the most appropriate chelating agent for *Cu‐labeled radiotracers and in vivo imaging applications.  相似文献   
60.
Self‐setting resorbable phosphate cements are characterized by an excellent biocompatibility and bioactivity. However, poor mechanical properties restrict their application. Most studies which characterize phosphate cements mechanically focus on strength measurements. Examinations of mechanical reliability and facture toughness were hardly performed. In this study, calcium phosphate whisker‐reinforced magnesium‐ammonium‐phosphate (struvite) cements were examined at the whisker–matrix interface and the measured strength, reliability and toughness values were correlated to these observations. Moreover, the toughening mechanisms were evaluated. It was shown that whisker incorporation is not beneficial for material strength. It led to a strength decrease from 29.8 to 21.8 MPa by the incorporation of 15 vol% calcium‐deficient hydroxyapatite (CDHA) whiskers compared to the pure struvite cement. Weibull statistics and microstructural observations revealed that this is caused by the whisker–matrix interface, which acts as a flaw. In contrast with that, the reliability increases upon whisker incorporation. Furthermore, the critical stress intensity factor KIC as well as the work‐of‐fracture γwof increase from 0.52 to 0.60 MPam1/2 and from 9.5 to 12.9 J/m² by the addition of 15 vol% CDHA whiskers compared to the original struvite cement. It was shown that whisker pull‐out and crack deflection are the main mechanisms responsible for this increase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号