首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   1篇
  国内免费   1篇
电工技术   35篇
化学工业   34篇
金属工艺   7篇
机械仪表   4篇
建筑科学   3篇
能源动力   18篇
轻工业   9篇
无线电   4篇
一般工业技术   11篇
冶金工业   4篇
原子能技术   7篇
自动化技术   4篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2013年   6篇
  2012年   5篇
  2011年   11篇
  2010年   4篇
  2009年   5篇
  2008年   8篇
  2007年   4篇
  2006年   9篇
  2005年   2篇
  2004年   5篇
  2003年   7篇
  2002年   5篇
  2001年   6篇
  2000年   8篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1994年   4篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1981年   2篇
  1980年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有140条查询结果,搜索用时 140 毫秒
31.
A sirocco fan using contra-rotating rotors in which an inner rotor is settled inside the sirocco fan rotor and each rotor rotates in an opposite direction was proposed for the purpose of getting the higher pressure and making the structure of a sirocco fan more compact. If the high discharge pressure is obtained with the adoption of the contra-rotating rotors, it could be used for various purposes. Pressure coefficient of a sirocco fan with contra-rotating rotors is 2.5 times as high as the conventional sirocco fan and the maximum efficiency point of contra-rotating rotors shifts to larger flow rate than a conventional sirocco fan. On the other hand, it was clarified from the flow measurement results that circumferential velocity component at the outlet of the outer rotor of contra-rotating ro- tors becomes larger than a conventional one. In the present paper, the performance of a conventional sirocco fan and a sirocco fan with contra-rotating rotors are shown and the internal flow field at the outlet of outer rotor of both cases is clarified. Then, the effect of different kind of contra-rotating rotors on the performance and internal flow field is investigated and the rotor design with higher performance would be discussed.  相似文献   
32.
We have proposed the optical guiding of intense laser pulses by fast Z-pinch for channel-guided laser wakefield acceleration (LWFA). The method has been developed based on capillary discharge-pumped X-ray laser technique. A discharge through preionized helium gas driven by a current of 4.8 kA with a rise time of 15 ns proved able to produce a uniform guiding channel with good reproducibility, less than the time jitter of 1.8 ns. The observed guiding channel formation process was corroborated by 1D-MHD simulation. With this new guiding method, an intense Ti-sapphire laser pulse (λ = 790 nm, 2.2 TW, 90 fs, 1 × 1017 W/cm2) was transported through the channel over a distance of 2 cm, corresponding to 12.5 times the Rayleigh length. © 2001 Scripta Technica, Electr Eng Jpn, 136(3): 19–27, 2001  相似文献   
33.
When galvanized steel sheets are closely overlapped and welded by laser lap welding, a large amount of molten metal spatters, resulting in a poor surface appearance of the weld and weakened strength of the welded joint, as compared with that of cold-rolled steel sheets. Whereas in the case of aluminium-coated steel sheets, even when they are closely overlapped and welded by laser lap welding, no spattering occurs. Thus, a good surface appearance of the weld is obtained, but the welded joint has lower strength. In both the mentioned cases, it is known that if a clearance of about 0.1 mm is provided between the steel sheets, laser lap welding produces a good surface appearance of the weld and the welded joint strength equal to that of the cold-rolled steel sheets. This report discusses specifically how, in laser lap welding of overlapped Al-coated steel sheets, Al of the coated layer comes to enter the weld metal, also specifically how to reduce the joint strength, as well as what behaviours of Al are present when a clearance is provided between the steel sheets. When the steel sheets are closely overlapped and welded, Al becoming molten on the base metal side of the bond of the overlapped face becomes swallowed up by the bath streams of the molten pool, flowing into the molten pool, then forming the Fe–Al intermetallic compound, while not being sufficiently stirred. It is considered that when subjected to the tensile shear test, the Fe–Al intermetallic compound starts to fracture, thereby causing a partial loss of the weld metal and a reduction in the joint strength. On the other hand, when a clearance is provided between the steel sheets, it may be inferred that the fusion Al on the base metal side of the bond stays in place without flowing into the molten pool, consequently not forming the Fe–Al intermetallic compounds within the weld metal.  相似文献   
34.
Currently, remote laser welding using solid-sate lasers is widespread in industry. Meanwhile, it is well known that the laser-induced plume blown up from the processing point affects penetration in laser welding, through the attenuation and the refraction of the laser beam. These phenomena in carbon dioxide laser welding have been investigated well and it is widely recognized that using the shielding gas flow to blow away the laser-induced plume is very important. However, in remote laser welding it is not easy to maintain the shielding gas flow to the processing point. By the way, these phenomena depend on the wavelength of the laser. So, quantitative knowledge of the attenuation and refraction of the solid state laser beam are necessary in achieving stable penetration in remote laser welding with this laser. This study was made to determine the attenuation coefficient and the amount of the effective focus shift caused by refraction of the laser beam in the plume, through melt run experiments with a YAG laser. The attenuation coefficient of the laser beam was estimated to be 0.00090 mm?1 from the dependence of the cross-sectional area of weld metal on the laser power and the plume length. This value is about one twentieth of the attenuation coefficient of a carbon dioxide laser beam at welding found in the literature. The amount of focus shift was estimated to be 0.67 mm per 100 mm plume length, from the dependency of penetration depth on the defocusing distance and the plume length. Comparing the 3 mm of plume length, this value is centesimal of the estimated value by Beck et al. [The effect of plasma formation on beam focusing in deep penetration welding with CO2 lasers. J. Phys. D: Appl. Phys. 1995;28:2430–2442] in CO2 laser welding. Therefore, a solid-state laser such as a YAG laser is considered to be a suitable laser source for remote laser welding.  相似文献   
35.
Energy harvesting technologies, which generate electricity from environmental energy, have been attracting great interest because of their potential to power ubiquitously deployed sensor networks and mobile electronics. Of these technologies, thermoelectric (TE) conversion is a particularly promising candidate, because it can directly generate electricity from the thermal energy that is available in various places. Here we show a novel TE concept based on the spin Seebeck effect, called 'spin-thermoelectric (STE) coating', which is characterized by a simple film structure, convenient scaling capability, and easy fabrication. The STE coating, with a 60-nm-thick bismuth-substituted yttrium iron garnet (Bi:YIG) film, is applied by means of a highly efficient process on a non-magnetic substrate. Notably, spin-current-driven TE conversion is successfully demonstrated under a temperature gradient perpendicular to such an ultrathin STE-coating layer (amounting to only 0.01% of the total sample thickness). We also show that the STE coating is applicable even on glass surfaces with amorphous structures. Such a versatile implementation of the TE function may pave the way for novel applications making full use of omnipresent heat.  相似文献   
36.
First, current interrupting experiments were performed for a rotary‐arc type of load‐break switch filled with pure CO2 at a total pressure of 0.1 MPa. Increase in the coil turns for generating magnetic field from 1 to 1.8, 2.5, and 3.6 (arbitrary unit) raised the current interrupting capability from 2.6 kA to 3.2, 3.5, and 4.1 kA. Second, experiments were performed for CO2 gas mixture under the condition of 3.6 coil turns. Gases of He, O2, N2, and air were admixted to CO2. Adding either He or O2 to CO2 at a concentration of 30% allows the switch to have higher interrupting capability than using pure CO2. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 167(2): 21–27, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20742  相似文献   
37.
We retrospectively identified patients with end‐stage renal disease undergoing hemodialysis treated with the mammalian target of rapamycin inhibitors as a second‐ and/or third‐line targeted therapy after treatment failure with the tyrosine kinase inhibitors for metastatic renal cell carcinoma. Patient medical records were reviewed to evaluate the response to therapies and treatment‐related toxicities. Four patients were identified. All patients had undergone nephrectomy, and one had received immunotherapy before targeted therapy. Two patients had clear cell histology, and the other two had papillary histology. All patients were classified into the intermediate risk group according to the Memorial Sloan‐Kettering Cancer Center risk model. All patients were treated with everolimus as a second‐ or third‐line therapy, and two patients were treated with temsirolimus as a second‐ or third‐line therapy after treatment failure with sorafenib or sunitinib. The median duration of everolimus therapy was 6.7 months, whereas that of temsirolimus was 9.5 months. All patients had stable disease as the best response during each period of therapy. There were no severe adverse events. The use of mammalian target of rapamycin inhibitors in patients who previously failed to respond to tyrosine kinase inhibitors appears to be feasible in patients with end‐stage renal disease requiring hemodialysis.  相似文献   
38.
This paper proposes a new type of fault current limiter (FCL), which consists of a high‐TC superconducting (HTS) element and two coils wound on the same core without any leakage magnetic flux. In this FCL, either the limiting impedance or the initial limiting current level can be controlled by adjusting the inductances and the winding direction of the coils. Therefore, this FCL could relax the material restrictions on high‐TC superconducting FCL. A current‐limiting experiment by a model FCL was carried out, and the limiting performance was observed. The initial limiting current level of the model FCL was 1.7 times higher than the critical current of the HTS element, and the fault current is suppressed to 52% immediately after the short‐circuit in the test. Considering voltage–current characteristics of a high‐TC superconductor in a computer simulation, the calculated results almost agreed with the experimental results. © 1999 Scripta Technica, Electr Eng Jpn, 127(1): 31–38, 1999  相似文献   
39.
40.
This paper deals with heat transfer and critical heat flux (CHF) in subcooled flow boiling offering a fundamental study aimed at high heat flux cooling. Experiments with water at 0.12 MPa were conducted in a mass velocity range from 500 kg/m2s to 15,000 kg/m2s (velocity from 0.5 m/s to 15 m/s) and subcooling from 20 K to 60 K. A sheet of stainless steel (80 mm in heated length, 10 mm wide, and 0.2 mm thick) was mounted flush with a sidewall of a vertical rectangular channel (cross-section 20 mm by 30 mm) and heated directly using direct current. It was found that mass velocity and subcooling strongly affect CHF and heat transfer in non-boiling convection and partial nucleate boiling regimes. These two parameters have no appreciable influence in the fully developed nucleate boiling regime. In the parameter range used, CHF reached 15 MW/m2. Boiling bubble behavior just prior to reaching CHF was found to vary depending on mass velocity and subcooling. 1998 Scripta Technica, Heat Trans Jpn Res, 27(5): 376–389, 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号