首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1831篇
  免费   58篇
  国内免费   3篇
电工技术   65篇
综合类   2篇
化学工业   464篇
金属工艺   41篇
机械仪表   49篇
建筑科学   30篇
矿业工程   1篇
能源动力   68篇
轻工业   82篇
水利工程   5篇
石油天然气   2篇
无线电   176篇
一般工业技术   353篇
冶金工业   321篇
原子能技术   50篇
自动化技术   183篇
  2023年   26篇
  2022年   37篇
  2021年   64篇
  2020年   31篇
  2019年   38篇
  2018年   39篇
  2017年   51篇
  2016年   50篇
  2015年   39篇
  2014年   56篇
  2013年   124篇
  2012年   82篇
  2011年   112篇
  2010年   96篇
  2009年   99篇
  2008年   70篇
  2007年   72篇
  2006年   69篇
  2005年   46篇
  2004年   39篇
  2003年   38篇
  2002年   20篇
  2001年   23篇
  2000年   25篇
  1999年   27篇
  1998年   116篇
  1997年   64篇
  1996年   50篇
  1995年   33篇
  1994年   32篇
  1993年   32篇
  1992年   22篇
  1991年   15篇
  1990年   10篇
  1989年   16篇
  1988年   14篇
  1987年   5篇
  1986年   5篇
  1985年   11篇
  1984年   5篇
  1983年   5篇
  1982年   13篇
  1981年   8篇
  1980年   9篇
  1979年   9篇
  1977年   9篇
  1976年   11篇
  1974年   4篇
  1971年   4篇
  1970年   4篇
排序方式: 共有1892条查询结果,搜索用时 0 毫秒
61.
Heme can be removed from a number of native hemoproteins, thus forming corresponding apoproteins, each of which provides a site for binding of a metal complex. In one example, myoglobin, an O2 storage protein, can be reconstituted with iron porphycene to dramatically enhance the O2 affinity. Although it is known that myoglobin has poor enzymatic activity, the insertion of iron corrole or iron porphycene into apomyoglobin increases its H2O2-dependent peroxidase/peroxygenase activities. Furthermore, reconstitution with manganese porphycene promotes hydroxylation of an inert C H bond. It is also of interest to insert a non-porphyrinoid complex into an apoprotein. A cavity of apocytochrome c has been found to bind a diiron carbonyl complex, serving as a functional model of diiron hydrogenase. Aponitrobindin has a rigid β-barrel structure that provides an excellent cavity for covalently anchoring a metal complex. A rhodium complex embedded in the cavity of genetically modified nitrobindin has been found to promote stereoselective polymerization of phenylacetylene.  相似文献   
62.
Electron-rich, side chain alkynes of an aromatic polyamine were functionalized by a [2+2] cycloaddition, followed by retro-cyclization with the electron-accepting 7,7,8,8-tetracyanoquinodimethane (TCNQ). 1H NMR studies were used to optimize the reaction conditions. Mild heating to >50?°C afforded the postfunctionalized aromatic polyamines with the desired acceptor amounts. The quantitative TCNQ addition was demonstrated by the MALDI-TOF mass spectrum and elemental analysis. Introduction of the cyano-based acceptor moieties into the polymer side chains resulted in unusually strong intermolecular interactions. In addition to the ?ШC?? interactions of the extended acceptor moieties, these intermolecular forces were supposed to improve the thermal stability of the aromatic polymers. Furthermore, the donor?Cacceptor chromophores formed by this postfunctionalization displayed low energy charge-transfer bands and redox activities in both the anodic and cathodic directions. The straightforward postfunctionalization technique using the alkyne?CTCNQ addition is useful for the preparation of narrow band gap polymers in one step.  相似文献   
63.
Low-resistivity indium tin oxide [ITO] film was successfully deposited on oxygen plasma-treated polyethylene terephthalate [PET] surfaces at room temperature. X-ray diffraction [XRD] measurements demonstrated that the film deposited on the PET surface that had not been treated with oxygen plasma had an amorphous structure. In contrast, after the low-power oxygen plasma treatment of the PET surface, the ITO film deposited on the PET surface had a poly-crystalline structure due to interactions between electric dipoles on the PET surface and electric dipoles in the ITO film. The minimum resistivity of the poly-crystalline ITO was about 3.6 times lower than that of the amorphous ITO film. In addition, we found that the resistivity of ITO film is proportional to the intensity of the (400) line in the film's XRD spectra.  相似文献   
64.
In this paper, the formation of Ga droplets on photo-lithographically patterned GaAs (100) and the control of the size and density of Ga droplets by droplet epitaxy using molecular beam epitaxy are demonstrated. In extension of our previous result from the journal Physical Status Solidi A, volume 209 in 2012, the sharp contrast of the size and density of Ga droplets is clearly observed by high-resolution scanning electron microscope, atomic force microscope, and energy dispersive X-ray spectrometry. Also, additional monolayer (ML) coverage is added to strength the result. The density of droplets is an order of magnitude higher on the trench area (etched area), while the size of droplets is much larger on the strip top area (un-etched area). A systematic variation of ML coverage results in an establishment of the control of size and density of Ga droplets. The cross-sectional line profile analysis and root mean square roughness analysis show that the trench area (etched area) is approximately six times rougher. The atomic surface roughness is suggested to be the main cause of the sharp contrast of the size and density of Ga droplets and is discussed in terms of surface diffusion.  相似文献   
65.
Isoprenoids form the largest family of compounds found in nature. Isoprenoids are often attached to other moieties such as aromatic compounds, indoles/tryptophan, and flavonoids. These reactions are catalyzed by three phylogenetically distinct prenyltransferases: soluble aromatic prenyltransferases identified mainly in actinobacteria, soluble indole prenyltransferases mostly in fungi, and membrane‐bound prenyltransferases in various organisms. Fusicoccin A (FC A) is a diterpene glycoside produced by the plant‐pathogenic fungus Phomopsis amygdali and has a unique O‐prenylated glucose moiety. In this study, we identified for the first time, from a genome database of P. amygdali, a gene (papt) encoding a prenyltransferase that reversibly transfers dimethylallyl diphosphate (DMAPP) to the 6′‐hydroxy group of the glucose moiety of FC A to yield an O‐prenylated sugar. An in vitro assay with a recombinant enzyme was also developed. Detailed analyses with recombinant PAPT showed that the enzyme is likely to be a monomer and requires no divalent cations. The optimum pH and temperature were 8.0 and 50 °C, respectively. Km values were calculated as 0.49±0.037 μM for FC P (a plausible intermediate of FC A biosynthesis) and 8.3±0.63 μM for DMAPP, with a kcat of 55.3±3.3×10?3 s. The enzyme did not act on representative substrates of the above‐mentioned three types of prenyltransferase, but showed a weak transfer activity of geranyl diphosphate to FC P.  相似文献   
66.
Purification of functional DNA nanostructures is an essential step in achieving intended functions because misfolded structures and the remaining free DNA strands in a solution can interact and affect their behavior. However, due to hydrophobicity-mediated aggregation, it is difficult to purify DNA nanostructures modified with hydrophobic molecules by conventional methods. Herein, we report the purification of cholesterol-modified DNA nanostructures by using a novel surfactant-assisted gel extraction. The addition of sodium cholate (SC) to the sample solution before structure folding prevented aggregation; this was confirmed by gel electrophoresis. We also found that adding sodium dodecyl sulfate (SDS) to the sample inhibited structural folding. The cholesterol-modified DNA nanostructures prepared with SC were successfully purified by gel extraction, and their ability to bind to the lipid membrane surfaces was maintained. This method will facilitate the purification of DNA nanostructures modified with hydrophobic molecules and expand their applicability in the construction of artificial cell-like systems.  相似文献   
67.
Selectivities for skeletal isomerizations of n-butane and n-pentane catalyzed by typical solid acids such as Cs2.5H0.5PW12O40 (Cs2.5), SO42−/ZrO2, WO3/ZrO2, and H-ZSM-5 and their Pt-promoted catalysts were compared. High selectivities for n-butane and low selectivity for n-pentane were observed over Cs2.5 and SO42−/ZrO2, while H-ZSM-5 was much less selective, and WO3/ZrO2 was highly selective for both reactions. The Pt-promoted solid acids were usually selective for these reactions in the presence of H2 except for Pt-H-ZSM-5 for n-butane isomerization. Both the acid strength and pore structure would be factors influencing the selectivity. Mechanism of skeletal isomerization of n-butane was investigated by using 1,4-13C2-n-butane over Cs2.5 and Pt–Cs2.5. It was concluded that n-butane isomerization proceeded mainly via monomolecular pathway with intramolecular rearrangement on Pt–Cs2.5, while it occurred through bimolecular pathway with intermolecular rearrangement on Cs2.5. The higher selectivity on Pt–Cs2.5 would be brought about by the monomolecular mechanism. In the skeletal isomerization of cyclohexane, Pt–Cs2.5/SiO2 was highly active and selective, while Pt–Cs2.5 was less selective. Control in the acid strength of Cs2.5 by the supporting would be responsible for the high selectivity.  相似文献   
68.
The catalytic activity of LaCoO3–-based mixed oxides for the oxidative coupling of methane has been tested by TPR and cyclic reaction. Characterization has been done by XRD, TGA and Mössbauer spectrometry. It is likely that the perovskite-crystal structure containing hypervalent metal ions has an important role and that unique structural oxygen species in the perovskite contribute to the partial oxidation of methane.  相似文献   
69.
70.
Two types of organic–inorganic hybrid base catalysts are prepared. Organic-functionalized molecular sieves (OFMSs), particularly “amine-immobilized porous silicates”, are designed based on common idea to immobilize catalytic active sites on silicate surface. Silicate–organic composite materials (SOCMs), such as “ordered porous silicate–quaternary ammonium composite materials”, are the precursors of ordered porous silicates obtained during the synthesis. Both the OFMS and the SOCM are used as the catalysts for Knoevenagel condensation. Among the OFMSs, there is clear tendency that the use of molecular sieve with larger pore volume and/or surface area gives the product in higher yield. Aminopropylsilyl (AP)-functionalized mesoporous silicates such as AP-MCM-41 gives the product in high yield under mild conditions. No loss of activity is observed after repeated use for three times. The SOCMs are also active for the same reaction. The precursors of the mesoporous silicates are more active than those of microporous silicates. This material can be repeatedly used without significant loss of activity. High activity is not due to the leached species. The active sites of the SOCM catalysts are considered to be SiO moieties located on the pore-mouth. Activity of the SOCM increases when the reaction is carried out without solvent, whereas decrease in activity of the OFMS is observed in the solvent-free system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号