首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5966篇
  免费   322篇
  国内免费   46篇
电工技术   75篇
综合类   20篇
化学工业   1700篇
金属工艺   124篇
机械仪表   221篇
建筑科学   161篇
矿业工程   4篇
能源动力   384篇
轻工业   565篇
水利工程   90篇
石油天然气   36篇
无线电   555篇
一般工业技术   1080篇
冶金工业   281篇
原子能技术   83篇
自动化技术   955篇
  2024年   24篇
  2023年   116篇
  2022年   329篇
  2021年   400篇
  2020年   302篇
  2019年   331篇
  2018年   363篇
  2017年   301篇
  2016年   326篇
  2015年   200篇
  2014年   327篇
  2013年   541篇
  2012年   316篇
  2011年   322篇
  2010年   292篇
  2009年   250篇
  2008年   170篇
  2007年   149篇
  2006年   137篇
  2005年   99篇
  2004年   75篇
  2003年   73篇
  2002年   55篇
  2001年   42篇
  2000年   40篇
  1999年   39篇
  1998年   71篇
  1997年   60篇
  1996年   46篇
  1995年   55篇
  1994年   26篇
  1993年   35篇
  1992年   32篇
  1991年   25篇
  1990年   24篇
  1989年   23篇
  1988年   16篇
  1987年   34篇
  1986年   30篇
  1985年   24篇
  1984年   33篇
  1983年   32篇
  1982年   20篇
  1981年   10篇
  1980年   14篇
  1979年   17篇
  1978年   13篇
  1977年   17篇
  1976年   16篇
  1975年   9篇
排序方式: 共有6334条查询结果,搜索用时 15 毫秒
101.

Conductive polymeric blends (CPBs) of polystyrene and polyaniline (PS/PANI) were prepared by solution casting method in various compositions. Film thickness of CPBs was achieved?~?250 micron. PS/PANI blend films were analyzed for electromagnetic interference (EMI) shielding characteristics in microwave and near-infrared (NIR) regions. PS/PANI blends showed remarkable features. Most mobile telecommunications use GHz frequency range and shielding effectiveness was observed in 9 GHz to 18 GHz. In 9 GHz to 18 GHz frequency range, 45 dB shielding effectiveness was measured. CPBs were also analyzed in the NIR region and showed transmittance of <1%. Microwaves and NIR radiation are the most abundant in the environment and cause damage to human health. Both types of radiation causes serious damage to electronic devices as well.

  相似文献   
102.
A CMOS distributed amplifier (DA) with low-power and flat and high power gain (S21) is presented. In order to decrease noise figure (NF) an RL terminating network used for the gate transmission line instead of single resistance. Besides, a flat and high S21 is achieved by using the proposed cascade gain cell consist of a cascode-stage with bandwidth extension capacitor. In the high-gain mode, under operation condition of V dd  = 1.2 V and the overall current consumption of 7.8 mA, simulation result shown that the DA consumed 9.4 mW and achieved a flat and high S21 of 20.5 ± 0.5 dB with an average NF of 6.5 dB over the 11 GHz band of interest, one of the best reported flat gain performances for a CMOS UWB DA. In the low-gain mode, the DA achieved average S21 of 15.5 ± 0.25 dB and an average NF of 6.6 dB with low power consumption (PDC) of 3.6 mW, the lowest PDC ever reported for a CMOS DA or LNA with an average gain better than 10 dB.  相似文献   
103.
In this paper, new three-dimensional (3-D) radix-(2/spl times/2/spl times/2)/(4/spl times/4/spl times/4) and radix-(2/spl times/2/spl times/2)/(8/spl times/8/spl times/8) decimation-in-frequency (DIF) fast Fourier transform (FFT) algorithms are developed and their implementation schemes discussed. The algorithms are developed by introducing the radix-2/4 and radix-2/8 approaches in the computation of the 3-D DFT using the Kronecker product and appropriate index mappings. The butterflies of the proposed algorithms are characterized by simple closed-form expressions facilitating easy software or hardware implementations of the algorithms. Comparisons between the proposed algorithms and the existing 3-D radix-(2/spl times/2/spl times/2) FFT algorithm are carried out showing that significant savings in terms of the number of arithmetic operations, data transfers, and twiddle factor evaluations or accesses to the lookup table can be achieved using the radix-(2/spl times/2/spl times/2)/(4/spl times/4/spl times/4) DIF FFT algorithm over the radix-(2/spl times/2/spl times/2) FFT algorithm. It is also established that further savings can be achieved by using the radix-(2/spl times/2/spl times/2)/(8/spl times/8/spl times/8) DIF FFT algorithm.  相似文献   
104.
The optical properties of ZnO/Ag/ZnO (ZAZ) multilayer structures were numerically modeled and calculated by a FDTD method. Such tri-layers were also manufactured using an ion beam sputtering plant. A good agreement is obtained between modelizations and realizations. The impact of the oxide thicknesses on the optical properties of the ZAZ structures were experimentally and numerically investigated, and allow us to adjust the spectral position of the transmission maximum. The transmission of these structures is optimized up to around 74%, on the whole absorption spectral range of the photoactive P3HT:PCBM bulk heterojunction. The best electrode design is glass/ZnO (30 nm)/Ag (14 nm)/ZnO (30 nm), which presents a sheet resistance of 7 Ω/□. The optimized ZAZ structure was successfully integrated in an organic solar cell as anode. A photovoltaic efficiency of 2.58% is obtained and is compared to an organic solar cell integrating a traditional ITO anode with an efficiency of 2.99%. Numerical calculations of the intrinsic absorption inside each layer of the organic solar cells are performed. Alternative ITO-free electrodes for organic solar cells are demonstrated.  相似文献   
105.
Intrusion detection is an important technique in computer and network security. A variety of intrusion detection approaches be present to resolve this severe issue but the main problem is performance. It is important to increase the detection rates and reduce false alarm rates in the area of intrusion detection. Therefore, in this research, an optimized intrusion detection mechanism using soft computing techniques is proposed to overcome performance issues. The KDD-cup dataset is used that is a benchmark for evaluating the security detection mechanisms. The Principal Component Analysis (PCA) is applied to transform the input samples into a new feature space. The selecting of an appropriate number of principal components is a critical problem. So, Genetic Algorithm (GA) is used in the optimum selection of principal components instead of using traditional method. The Support Vector Machine (SVM) is used for classification purpose. The performance of this approach is addresses. Further, a comparative analysis is made with existing approaches. Consequently, this method provides optimal intrusion detection mechanism which is capable to minimize amount of features and maximize the detection rates.  相似文献   
106.
An approach to switched-current filter design based on digital multiply-accumulator and delay blocks is presented. The characteristics of the filter are made fully programmable by simply changing the ratios of the coefficient transistors. To reduce the effect of switch charge injection and channel-length modulation, a high-performance, single-ended differential, switched-current memory cell is developed and used as a basic building block. To reduce the chip area and to maintain the required accuracy of the coefficients, an array consisting of three different sizes of transistors is designed instead of using a unit transistor array as coefficient transistors. An experimental prototype infinite impulse response filter array consisting of six second-order switched-current sections is designed and fabricated with a standard 1.2-μ CMOS process technology. A hard-wiring technique is used to program the filters. The test results show that the characteristics of the filters satisfy the design requirements  相似文献   
107.
A new double-pass long wavelength band erbium-doped fiber amplifier with enhanced noise figure characteristics is demonstrated by adding a short length of forward pumped erbium-doped fiber (EDF) in front of a double-pass amplifier. Compared with the conventional double-pass amplifier, the new amplifier provides noise figure improvement of about 0.8 to 6.0 dB over the flat-gain region from 1568 to 1600 nm. Since the optical circulator prevents the amplified signal and backward amplified spontaneous emission from propagating into the EDF, the population inversion of the input part of the amplifier is hardly affected by the intense lights, therefore, the noise figure could be kept low. The new double-pass system has achieved a flat-gain output at about 33.5 dB, which is 13.5 dB higher than that of the single-pass system with gain variation less than 1.3 dB at the flat-gain region. The noise figure varies from 5.9 to 6.6 dB in this region.  相似文献   
108.
This paper reports the performances of several broad-band monolithic SiGe monolithic microwave integrated circuits (MMICs) suitable for phased-array radar applications. The amplitude and phase control MMIC designs are based on an optimized SiGe p-i-n diode offered by the IBM 5HP SiGe foundry process. Utilizing this diode, several control circuitries including a broad-band (1-20-GHz) monolithic single-pole double-throw switch, a five-port transfer switch, a 6-bit phase shifter, and a 5-bit attenuator, all operating over 7-11 GHz, are designed. Also, the design and performance of an SiGe heterojunction bipolar transistor variable-gain cascode amplifier that combines the functionality of an amplifier and an attenuator into one MMIC is described.  相似文献   
109.
Engineered magnetic iron oxide nanoparticles with surprisingly high antimicrobial activity and excellent safety profiles to mammalian cell lines have been developed. Hematite hollow nanospheres (HNSs) are prepared by a facile hard templating method; reduction of hematite HNSs by H2 leads to magnetite HNSs. The antimicrobial activity of magnetite HNSs towards Gram negative (Escherichia coli) and Gram positive (Staphylococcus epidermidis) bacteria is evaluated against hematite HNSs and conventional magnetite (C‐magnetite; diameter <50 nm). Superior antibacterial performance is observed for magnetite HNSs towards both E. coli and S. epidermidis over hematite HNSs and C‐magnetite. The origin of the antimicrobial activity of magnetite HNSs is the high leaching of iron ions in the presence of microorganisms, which leads to high generation of reactive oxygen species. Magnetite HNSs allow multiple‐fold increase in the generation of soluble iron ions over hematite HNSs and C‐magnetite, showing that control over both the composition and nanostructure is crucial to tune the antimicrobial activity of iron oxides. Based on the current findings, magnetic HNSs show promising potential antimicrobial applications.  相似文献   
110.
This paper proposes and evaluates Low-overhead, Reliable Switch (LRS) architecture to enhance the reliability of Network-on-Chips (NoCs). The proposed switch architecture exploits information and hardware redundancies to eliminate retransmission of faulty flits. The LRS architecture creates a redundant copy of each newly received flit and stores the redundant flit in a duplicated flit buffer that is associated with the incoming channel of the flit. Flit buffers in the LRS are equipped with information redundancy to detect probable bit flip errors. When an error is detected in a flit buffer, its duplicated buffer is used to recover the correct value of the flit. In this way, the propagation of the erroneous flits in NoC is prevented without any need to credit signals and, retransmission buffers. Using an HDL-based NoC simulator, the LRS is compared to two other widely used reliability enhancement methods: the Switch-to-Switch (S2S) and the End-to-End (E2E) methods. The simulation results show that the LRS consumes less power and provides higher performance compared to those of the E2E and S2S methods. More importantly, unlike the E2E and the S2S methods, the LRS has constant overheads, which makes it applicable in all working conditions. To validate the comparison, an analytical performance and reliability model is developed for the LRS, S2S and E2E methods. The results of the model match those obtained from the simulations while the proposed model is significantly faster.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号