首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   792篇
  免费   18篇
  国内免费   2篇
电工技术   9篇
化学工业   125篇
金属工艺   48篇
机械仪表   46篇
建筑科学   12篇
能源动力   38篇
轻工业   23篇
水利工程   2篇
石油天然气   8篇
无线电   51篇
一般工业技术   176篇
冶金工业   125篇
原子能技术   21篇
自动化技术   128篇
  2023年   9篇
  2022年   22篇
  2021年   20篇
  2020年   18篇
  2019年   11篇
  2018年   21篇
  2017年   16篇
  2016年   23篇
  2015年   12篇
  2014年   32篇
  2013年   45篇
  2012年   37篇
  2011年   40篇
  2010年   32篇
  2009年   43篇
  2008年   41篇
  2007年   31篇
  2006年   16篇
  2005年   17篇
  2004年   15篇
  2003年   16篇
  2002年   11篇
  2001年   5篇
  2000年   16篇
  1999年   10篇
  1998年   18篇
  1997年   21篇
  1996年   20篇
  1995年   22篇
  1994年   18篇
  1993年   14篇
  1992年   15篇
  1991年   13篇
  1990年   7篇
  1989年   7篇
  1988年   11篇
  1987年   8篇
  1986年   9篇
  1985年   6篇
  1984年   12篇
  1983年   4篇
  1982年   6篇
  1981年   6篇
  1980年   3篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1976年   6篇
  1975年   5篇
  1970年   3篇
排序方式: 共有812条查询结果,搜索用时 15 毫秒
21.
In this work, we present a multiscale computational model for flame synthesis of TiO2 nanoparticles in a turbulent flame reactor. The model is based on large-eddy simulation (LES) methodology in conjunction with detailed gas-phase chemical kinetics to accurately model the highly complicated combustion and nucleation processes in a turbulent flame. A flamelet-based model is used to model turbulence–chemistry interactions. In particular, the transformation of TiCl4 to the solid primary nucleating TiO2 nanoparticles is represented using an unsteady kinetic model considering 30 species and 69 reactions in order to accurately describe the important event of nanoparticle formation. The evolution of the TiO2 number density function is tracked using the quadrature method of moments (QMOM). For validation purposes, the detailed computational model is compared against experimental data and reasonable agreement is obtained.  相似文献   
22.
In this research work, we have characterized and simulated a well-known hole transport material (HTM) for perovskite solar cell (PSC) and conductive polyme  相似文献   
23.
The influence of varying the CaO/MgO ratio on the structure and thermal properties of CaO–MgO–SiO2–P2O5–CaF2 glasses was studied in a series of eight glass compositions in the glass forming region of diopside (CaMgSi2O6)–fluorapatite [Ca5(PO4)3F]–wollastonite (CaSiO3) ternary system. The melt-quenched glasses were characterized for their structure by infrared spectroscopy (FTIR) and magic angle spinning (MAS)-nuclear magnetic resonance (NMR) spectroscopy. Silicon is predominantly present as Q2 (Si) species, while phosphorus tends to coordinate in orthophosphate environment. The sintering and crystallization parameters of the glasses were obtained from differential thermal analysis (DTA) while crystalline phase fractions in the sintered glass–ceramics were analyzed by X-ray diffraction adjoined with Rietveld refinement. Diopside, fluorapatite, wollastonite and pseudowollastonite crystallized as the main crystalline phases in all the glass–ceramics with their content varying with respect to variation in CaO/MgO ratio in glasses. The implications of structure and sintering behaviour of glasses on their bioactivity were discussed.  相似文献   
24.
The use of hybrid advanced oxidation processes(AOPs) for the removal of pollutants from industrial effluents has been extensively studied in recent literature. The aim of this study is to compare the performance of the photo,Fenton, photo-Fenton and ozone–photo–Fenton processes in terms of color removal and chemical oxygen demand(COD) removal of distillery industrial effluent together with the associated electrical energy per order. It was observed from the experimental results that the O_3/UV/Fe~(2 +)/H_2O_2 process yielded a 100% color and95.50% COD removals with electrical energy per order of 0.015 k W·h·m~(-3) compared to all other combinations of the AOPs. The effects of various operating parameters such as H_2O_2 and Fe~(2+) concentration, effluent pH, COD concentration and UV power on the removal of color, COD and electrical energy per order for the ozone–photo–Fenton process was critically studied and reported. The color and COD removals were analyzed using a UV/Vis spectrometer and closed reflux method.  相似文献   
25.
This work aimed towards the study on variations in the percentage of β-phase in Poly vinylidene fluoride (PVDF) thin films deposited by spin coating technique. PVDF is a semi-crystalline polymer which exhibits α, β, γ and δ polymorphs. Among these polymorphs, generally it crystallizes in a non-polar α-phase, which is of little importance as far as its applications are concerned. However, the β-phase, which exhibits spontaneous polarity created tremendous interest and showed a path towards the devices based on its pyro- and piezoelectric properties. Fourier Transform Infrared (FTIR) spectroscopy and XRD techniques were used to study the percentage of formation of β-phase in spin coated PVDF thin films at different processing conditions viz. spin rotation speed (rpm), solution concentration and annealing temperature. We identified the β-phase percentage in PVDF thin films, which are (i) Deposited with different rotation speeds ranging from 1000 to 9000 rpm, (ii) Annealed at different temperatures viz.; room temperature to 100C, and (iii) Deposited at various solution concentrations. It is identified that percentage of formation of β-phase is high in the films deposited with 15(w/v)% solution concentration which is annealed at 100C. The films deposited at higher rpm is showing low enhancement in the β-phase with annealing temperature.  相似文献   
26.
The synergistic influence of prior-austenite grain size and silicon content of 9Cr–1Mo steel on the resistance to scale spallation has been studied in air at 773 K (for 500 hr) and 973 K (12 hr). Two steels, irrespective of their grain size and Si content, did not show spallation during oxidation at 773 K. Spallation occurred at 973 K, and fine-grain steels exhibited less spallation resistance than coarse-grain ones (in low-as well as high-Si steels). Among the four possible combinations of grain size ans Si content, the steel with low Si and fine grains showed least resistance to spallation, while the steel with high Si and coarse grains showed the best resistance. Spallation was found to initiate in the areas adjoining the oxide ridges formed at the alloy grain boundaries. Oxide scales at the ridges and within the grains were analyzed by scanning electron microscopy (SEM/EDX) and secondary-ion mass spectrometry (SIMS). These analyses suggest depletion of silicon from the areas adjoining grain boundaries, resulting in thicker scaling that triggers spallation in such areas. For similar grain-size materials, the necessary thickness for spallation was attained earlier with low-Si steel rather than in high-Si steel.  相似文献   
27.
Diode devices (glass/ITO/polymer/Al) have been fabricated using poly (3-hexylthiophene) (P3HT) crosslinked with two different biaryl crosslinkers. Crosslinking was performed by exposing the thin films with different wt% of crosslinker to UV irradiation and progress of crosslinking was monitored by IR spectroscopy. An increase in hole mobility of two orders of magnitude has been observed after crosslinking.  相似文献   
28.
Autocatalytic quaternary Ni–W–Mo–P films were prepared using alkaline citrate based baths and compared with binary Ni–P and ternary Ni–W–P, Ni–Mo–P coatings. Energy dispersive X-ray analysis showed that the binary Ni–P deposit contained 12·2 wt-%P. Codeposition of tungsten in Ni–P matrix resulted in ternary Ni–W–P with 4·1 wt-%P and 5·2 wt-%W. Incorporation of molybdenum led to a ternary Ni–Mo–P deposit containing 4·1 wt-%Mo and 11·2 wt-%P. Presence of both sodium tungstate and sodium molybdate in the basic bath resulted in a quaternary coating with 3·6 wt-%W, 6·7 wt-%Mo and 2·5 wt-%P. X-ray diffraction patterns of all the deposits revealed a single peak for Ni (1 1 1). The quaternary alloy exhibited a sharper peak showing the more crystalline nature of the deposit. Field emission scanning electron microscopy studies of the deposits showed the presence of smooth nodules for ternary deposits, but coarse and well defined nodules for quaternary deposits. Phase transformation behaviour of the ternary Ni–W–P deposit revealed a single exothermic peak at 440°C. However, ternary Ni–Mo–P deposit exhibited a split type high temperature peak at 397 and 461°C and the quaternary Ni–W–Mo–P deposit showed a single high temperature peak at 485°C. Microhardness measurements showed that the quaternary Ni–W–Mo–P deposit exhibited increased hardness of 920 HV(50 gf) when heat treated for 1 h at 400°C.  相似文献   
29.
Stress corrosion cracking studies of aluminum alloys AA2219, AA8090, and AA5456 in heat-treated and non heat-treated condition were carried out using electrochemical noise technique with various applied stresses. Electrochemical noise time series data (corrosion potential vs. time) was obtained for the stressed tensile specimens in 3.5% NaCl aqueous solution at room temperature (27 °C). The values of drop in corrosion potential, total corrosion potential, mean corrosion potential, and hydrogen overpotential were evaluated from corrosion potential versus time series data. The electrochemical noise time series data was further analyzed with rescaled range (R/S) analysis proposed by Hurst to obtain the Hurst exponent. According to the results, higher values of the Hurst exponents with increased applied stresses showed more susceptibility to stress corrosion cracking as confirmed in case of alloy AA 2219 and AA8090.  相似文献   
30.
The tensile properties of superalloy IN738LC with different precipitate microstructures are evaluated at room temperature, 650 °C, 750 °C, and 85 °C at two different strain rates. The properties can be presented in two groups based on the comparable closeness of the values obtained—those of microstructures C and M, with coarse and medium size precipitates, and those of microstructures F and D, with fine and duplex size (medium + fine) precipitates. Preferred orientations, lattice parameters, and metallography are used to characterize the microstructure and tensile testing to determine the yield strength, tensile strength, and strain hardening coefficients. An anomalous increase in yield strength is observed, which occurs at temperatures about 100 °C higher with higher strain rate than with lower strain rate applied. The experimental results show that the yield strength is influenced by preferred orientations and precipitate size, while the tensile strength is effected by the size and morphology of precipitates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号