首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11051篇
  免费   462篇
  国内免费   20篇
电工技术   120篇
综合类   5篇
化学工业   2175篇
金属工艺   160篇
机械仪表   211篇
建筑科学   681篇
矿业工程   23篇
能源动力   355篇
轻工业   972篇
水利工程   114篇
石油天然气   47篇
无线电   780篇
一般工业技术   2117篇
冶金工业   1820篇
原子能技术   55篇
自动化技术   1898篇
  2023年   72篇
  2022年   146篇
  2021年   223篇
  2020年   181篇
  2019年   227篇
  2018年   239篇
  2017年   247篇
  2016年   268篇
  2015年   235篇
  2014年   346篇
  2013年   723篇
  2012年   579篇
  2011年   815篇
  2010年   539篇
  2009年   499篇
  2008年   625篇
  2007年   540篇
  2006年   477篇
  2005年   415篇
  2004年   360篇
  2003年   345篇
  2002年   311篇
  2001年   162篇
  2000年   170篇
  1999年   167篇
  1998年   290篇
  1997年   235篇
  1996年   202篇
  1995年   164篇
  1994年   128篇
  1993年   115篇
  1992年   97篇
  1991年   94篇
  1990年   97篇
  1989年   82篇
  1988年   70篇
  1987年   85篇
  1986年   77篇
  1985年   81篇
  1984年   68篇
  1983年   85篇
  1982年   65篇
  1981年   71篇
  1980年   59篇
  1979年   54篇
  1978年   42篇
  1977年   48篇
  1976年   48篇
  1974年   36篇
  1973年   34篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
961.
Cities worldwide face the challenges of accommodating a growing population, while reducing emissions to meet climate mitigation targets. Public transit investments are often proposed as a way to curb emissions while maintaining healthy urban economies. However, cities face a system-level challenge in that transportation systems have cascading effects on land use and economic development. Understanding how an improved public transit system could affect urban growth and emissions requires a system-level view of a city, to anticipate side effects that could run counter to policy goals. To address this knowledge gap, we conducted a case study on the rapidly growing Research Triangle, North Carolina (USA) region, which has proposed to build a Light Railway by 2026 along a heavily used transportation corridor between the cities of Durham and Chapel Hill. At the same time, Durham County has set a goal of lowering greenhouse gas emissions by 30% from a 2005 baseline by 2030. In collaboration with local stakeholders, we developed a system dynamics model to simulate how Light Rail transit and concurrent policies could help or hinder these sustainable growth goals. The Durham–Orange Light Rail Project (D–O LRP) model simulates urban–regional dynamics between 2000 and 2040, including feedbacks from energy spending on economic growth and from land scarcity on development. Counter to expectations, model scenarios that included Light Rail had as much as 5% higher regional energy use and CO2 emissions than business-as-usual (BAU) by 2040 despite many residents choosing to use public transit instead of private vehicles. This was largely due to an assumption that Light Rail increases demand for commercial development in the station areas, creating new jobs and attracting new residents. If regional solar capacity grew to 640 MW, this would offset the emissions growth, mostly from new buildings, that is indirectly due to Light Rail. National trends in building and automobile energy efficiency, as well as federal emissions regulation under the Clean Power Plan, would also allow significant progress toward the 2030 Durham emissions reduction goal. By simulating the magnitude of technology and policy effects, the D–O LRP model can enable policy makers to make strategic choices about regional growth.  相似文献   
962.
963.
964.
The algebraic nonlinearity of an n-bit boolean function is defined as the degree of the polynomial f(X) Z 2[x 1, x 2,..., x n] that represents f. We prove that the average degree of an ANF polynomial for an n-bit function is n+o(1). Further, for a balanced n-bit function, any subfunction obtained by holding less than n-[log n]- 1 bits constant is also expected to be nonaffine. A function is partially linear if f(X) has some indeterminates that only occur in terms bounded by degree 1. Boolean functions which can be mapped to partially linear functions via a linear transformation are said to have a linear structure, and are a potentially weak class of functions for cryptography. We prove that the number of n-bit functions that have a linear structure is asymptotic .The author is presently employed by the Distributed System Technology Center, Brisbane, Australia.Project sponsored in part by NSERC operating Grant OGP0121648, and the National Security Agency under Grant Number MDA904-91-H-0012. The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation hereon.  相似文献   
965.
Colloidal nanocrystals combine size‐ and facet‐dependent properties with solution processing. They offer thus a compelling suite of materials for technological applications. Their size‐ and facet‐tunable features are studied in synthesis; however, to exploit their features in optoelectronic devices, it will be essential to translate control over size and facets from the colloid all the way to the film. Larger‐diameter colloidal quantum dots (CQDs) offer the attractive possibility of harvesting infrared (IR) solar energy beyond absorption of silicon photovoltaics. These CQDs exhibit facets (nonpolar (100)) undisplayed in small‐diameter CQDs; and the materials chemistry of smaller nanocrystals fails consequently to translate to materials for the short‐wavelength IR regime. A new colloidal management strategy targeting the passivation of both (100) and (111) facets is demonstrated using distinct choices of cations and anions. The approach leads to narrow‐bandgap CQDs with impressive colloidal stability and photoluminescence quantum yield. Photophysical studies confirm a reduction both in Stokes shift (≈47 meV) and Urbach tail (≈29 meV). This approach provides a ≈50% increase in the power conversion efficiency of IR photovoltaics compared to controls, and a ≈70% external quantum efficiency at their excitonic peak.  相似文献   
966.
Ionic liquids (ILs) and deep eutectic solvents have shown great promise in drug delivery applications. Choline‐based ILs, in particular choline and geranic acid (CAGE), have been used to enhance the transdermal delivery of several small and large molecules. However, detailed studies outlining the design principles of ILs for transdermal drug delivery are still lacking. Using two model drugs of differing hydrophilicities, acarbose and ruxolitinib and 16 ILs, the dependence of skin penetration on the chemical properties of ILs is examined. First, the impact of ion stoichiometry on skin penetration of drugs is assessed using CAGE, which evidences that a molar ratio of 1:2 of choline to geranic acid yields the highest delivery. Subsequently, variants of CAGE are prepared using anions with structural similarity to geranic acid and cations with structural similarity to choline at a ratio of 1:2. Mechanistic studies reveal that the potency of ILs in enhancing transdermal drug delivery correlates inversely with the inter‐ionic interactions as determined by 2D NMR spectroscopy. Using this understanding, a new IL is designed, and it provides the highest delivery of ruxolitinib of all ILs tested here. Overall, these studies provide a generalized framework for optimizing ILs for enhancing skin permeability.  相似文献   
967.
There is increasing interest in the material point method (MPM) as a means of modelling solid mechanics problems in which very large deformations occur, e.g. in the study of landslides and metal forming; however, some aspects vital to wider use of the method have to date been ignored, in particular methods for imposing essential boundary conditions in the case where the problem domain boundary does not coincide with the background grid element edges. In this paper, we develop a simple procedure originally devised for standard finite elements for the imposition of essential boundary conditions, for the MPM, expanding its capabilities to model boundaries of any inclination. To the authors' knowledge, this is the first time that a method has been proposed that allows arbitrary Dirichlet boundary conditions (zero and nonzero values at any inclination) to be imposed in the MPM. The method presented in this paper is different from other MPM boundary approximation approaches, in that (1) the boundaries are independent of the background mesh, (2) artificially stiff regions of material points are avoided, and (3) the method does not rely on mirroring of the problem domain to impose symmetry. The main contribution of this work is equally applicable to standard finite elements and the MPM.  相似文献   
968.
969.
Double notched round bars made of semi-crystalline polymer polyamide 6 (PA6) were submitted to monotonic tensile and creep tests. The two notches had a root radius of 0.45 mm, which imposes a multiaxial stress state and a state of high triaxiality in the net (minimal) section of the specimens. Tests were carried out until the failure occurred from one of the notches. The other one, unbroken but deformed under steady strain rate or steady load, was inspected using the Synchrotron Radiation Computed Tomography (SRCT) technique. These 3D through thickness inspections allowed the study of microstructural evolution at the peak stress for the monotonic tensile test and at the beginning of the tertiary creep for the creep tests. Cavitation features were assessed with a micrometre resolution within the notched region. Spatial distributions of void volume fraction (\(\mathit{Vf}\)) and void morphology were studied. Voiding mechanisms were similar under steady strain rates and steady loads. The maximum values of \(\mathit{Vf}\) were located between the axis of revolution of the specimens and the notch surface and voids were considered as flat cylinders with a circular basis perpendicular to the loading direction. A model, based on porous plasticity, was used to simulate the mechanical response of this PA6 material under high stress triaxiality. Both macroscopic behaviour (loading curves) and voiding micro-mechanisms (radial distributions of void volume fraction) were accurately predicted using finite element simulations.  相似文献   
970.
The number of biological/biomedical applications that require AMS to achieve their goals is increasing, and so is the need for a better understanding of the physical, morphological, and structural traits of high quality of AMS targets. The metrics of quality included color, hardness/texture, and appearance (photo and SEM), along with FT-IR, Raman, and powder X-ray diffraction spectra that correlate positively with reliable and intense ion currents and accuracy, precision, and sensitivity of fraction modern ( F m). Our previous method produced AMS targets of gray-colored iron-carbon materials (ICM) 20% of the time and of graphite-coated iron (GCI) 80% of the time. The ICM was hard, its FT-IR spectra lacked the sp (2) bond, its Raman spectra had no detectable G' band at 2700 cm (-1), and it had more iron carbide (Fe 3C) crystal than nanocrystalline graphite or graphitizable carbon (g-C). ICM produced low and variable ion current whereas the opposite was true for the graphitic GCI. Our optimized method produced AMS targets of graphite-coated iron powder (GCIP) 100% of the time. The GCIP shared some of the same properties as GCI in that both were black in color, both produced robust ion current consistently, their FT-IR spectra had the sp (2) bond, their Raman spectra had matching D, G, G', D +G, and D ' bands, and their XRD spectra showed matching crystal size. GCIP was a powder that was easy to tamp into AMS target holders that also facilitated high throughput. We concluded that AMS targets of GCIP were a mix of graphitizable carbon and Fe 3C crystal, because none of their spectra, FT-IR, Raman, or XRD, matched exactly those of the graphite standard. Nevertheless, AMS targets of GCIP consistently produced the strong, reliable, and reproducible ion currents for high-throughput AMS analysis (270 targets per skilled analyst/day) along with accurate and precise F m values.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号