首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9655篇
  免费   453篇
  国内免费   20篇
电工技术   100篇
综合类   4篇
化学工业   1979篇
金属工艺   140篇
机械仪表   190篇
建筑科学   616篇
矿业工程   21篇
能源动力   323篇
轻工业   845篇
水利工程   108篇
石油天然气   28篇
无线电   710篇
一般工业技术   1959篇
冶金工业   1287篇
原子能技术   37篇
自动化技术   1781篇
  2023年   70篇
  2022年   135篇
  2021年   215篇
  2020年   175篇
  2019年   211篇
  2018年   233篇
  2017年   232篇
  2016年   254篇
  2015年   226篇
  2014年   335篇
  2013年   661篇
  2012年   555篇
  2011年   793篇
  2010年   503篇
  2009年   478篇
  2008年   590篇
  2007年   514篇
  2006年   441篇
  2005年   390篇
  2004年   330篇
  2003年   308篇
  2002年   276篇
  2001年   146篇
  2000年   158篇
  1999年   135篇
  1998年   140篇
  1997年   151篇
  1996年   136篇
  1995年   115篇
  1994年   93篇
  1993年   87篇
  1992年   83篇
  1991年   61篇
  1990年   78篇
  1989年   62篇
  1988年   46篇
  1987年   62篇
  1986年   52篇
  1985年   59篇
  1984年   55篇
  1983年   70篇
  1982年   53篇
  1981年   43篇
  1980年   37篇
  1979年   39篇
  1978年   29篇
  1977年   28篇
  1976年   25篇
  1975年   22篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
下扬子地区中上二叠统发育一套海陆过渡相页岩,其显微组成与海相页岩存在明显的差异,为了研究该套页岩有机孔的发育特征及影响因素,开展了有机岩石学、扫描电镜、氩离子抛光扫描电镜、气测孔隙度和压汞等相关分析。研究表明,中上二叠统页岩中有机孔整体发育较好,但不同有机质组分中孔隙的发育存在明显的差别,具体表现为镜质体内孔隙发育差,固体沥青内发育少量孤立的孔隙,腐泥质内具有丰富的孔隙。黄铁矿或黏土矿物常与有机质形成有机/矿物复合体,复合体内有机孔普遍发育较好,可能与黄铁矿或黏土矿物促进有机质生烃和分解有关。中上二叠统页岩TOC含量与比表面积之间存在明显的线性正相关性,但与孔隙度之间具有复杂的关系,当w(TOC)<6.16%时,孔隙度随TOC含量的增加而增加,而当w(TOC)>6.16%时,孔隙度普遍较低且与TOC含量之间存在微弱的负相关性。孔径分布特征也揭示高TOC页岩的中—大孔体积明显低于低TOC页岩。页岩孔隙结构发育特征表明,TOC含量越高、固体沥青组分以及贫氢组分的含量越高,这些组分占据的矿物孔隙越多,降低了页岩总的孔隙空间,且TOC含量越高,页岩越易被压实,造成中大孔塌陷,进一步降低了页岩的孔隙度。  相似文献   
992.
Cannabis sativa (Cannabis) has recently been legalized in multiple countries globally for either its recreational or medicinal use. This, in turn, has led to a marked increase in the number of Cannabis varieties available for use in either market. However, little information currently exists on the genetic distinction between adopted varieties. Such fundamental knowledge is of considerable value and underpins the accelerated development of both a nascent pharmaceutical industry and the commercial recreational market. Therefore, in this study, we sought to assess genetic diversity across 10 Cannabis varieties by undertaking a reduced representation shotgun sequencing approach on 83 individual plants to identify variations which could be used to resolve the genetic structure of the assessed population. Such an approach also allowed for the identification of the genetic features putatively associated with the production of secondary metabolites in Cannabis. Initial analysis identified 3608 variants across the assessed population with phylogenetic analysis of this data subsequently enabling the confident grouping of each variety into distinct subpopulations. Within our dataset, the most diagnostically informative single nucleotide polymorphisms (SNPs) were determined to be associated with the long-terminal repeat (LTRs) class of retroelements, with 172 such SNPs used to fully resolve the genetic structure of the assessed population. These 172 SNPs could be used to design a targeted resequencing panel, which we propose could be used to rapidly screen different Cannabis plants to determine genetic relationships, as well as to provide a more robust, scientific classification of Cannabis varieties as the field moves into the pharmaceutical sphere.  相似文献   
993.
Colorectal cancer is a serious threat to human health. Poor prognosis and frequently reported drug resistance urges research into novel biomarkers and mechanisms to aid in the understanding of the development and progression of colorectal cancer and to optimise therapeutic strategies. In the current study, we investigated the roles of a putative tumour suppressor, EPLIN, in colorectal cancer. Our clinical colorectal cancer cohort and online databases revealed a downregulation of EPLIN in colorectal cancer tissues compared with normal tissues. The reduced expression of EPLIN was associated with poor clinical outcomes of patients. In vitro cellular function assays showed that EPLIN elicited an inhibitory effect on cellular growth, adhesion, migration and invasion. Utilising a protein microarray on protein samples from normal and tumour patient tissues suggested HSP60, Her2 and other signalling events were novel potential interacting partners of EPLIN. It was further revealed that EPLIN and HSP60 were negative regulators of Her2 in colorectal cancer cells. The clinical cohort also demonstrated that expression of HSP60 and Her2 affected clinical outcomes, but most interestingly the combination of EPLIN, HSP60 and Her2 was able to identify patients with the most unfavourable clinical outcome by independently predicting patient overall survival and disease free survival. Furthermore, EPLIN and HSP60 exhibited potential to regulate cellular response to chemotherapeutic and EGFR/Her2 targeted therapeutic agents. In conclusion, EPLIN is an important prognostic factor for patients with colon cancer and reduced EPLIN in CRC contributes to aggressive traits of CRC cells and their responses to chemotherapeutic drugs. Collectively, EPLIN is a pivotal factor for the development and progression of colorectal cancer and has important clinical and therapeutic values in this cancer type.  相似文献   
994.
Pseudomonas fluorescens SBW25 is a model soil- and plant-associated bacterium capable of forming a variety of air–liquid interface biofilms in experimental microcosms and on plant surfaces. Previous investigations have shown that cellulose is the primary structural matrix component in the robust and well-attached Wrinkly Spreader biofilm, as well as in the fragile Viscous Mass biofilm. Here, we demonstrate that both biofilms include extracellular DNA (eDNA) which can be visualized using confocal laser scanning microscopy (CLSM), quantified by absorbance measurements, and degraded by DNase I treatment. This eDNA plays an important role in cell attachment and biofilm development. However, exogenous high-molecular-weight DNA appears to decrease the strength and attachment levels of mature Wrinkly Spreader biofilms, whereas low-molecular-weight DNA appears to have little effect. Further investigation with CLSM using an amyloid-specific fluorophore suggests that the Wrinkly Spreader biofilm might also include Fap fibers, which might be involved in attachment and contribute to biofilm strength. The robust nature of the Wrinkly Spreader biofilm also allowed us, using MALDI-TOF mass spectrometry, to identify matrix-associated proteins unable to diffuse out of the structure, as well as membrane vesicles which had a different protein profile compared to the matrix-associated proteins. CLSM and DNase I treatment suggest that some vesicles were also associated with eDNA. These findings add to our understanding of the matrix components in this model pseudomonad, and, as found in other biofilms, biofilm-specific products and material from lysed cells contribute to these structures through a range of complex interactions.  相似文献   
995.
We investigated the cerebral folate system in post-mortem brains and matched cerebrospinal fluid (CSF) samples from subjects with definite Alzheimer’s disease (AD) (n = 21) and neuropathologically normal brains (n = 21) using immunohistochemistry, Western blot and dot blot. In AD the CSF showed a significant decrease in 10-formyl tetrahydrofolate dehydrogenase (FDH), a critical folate binding protein and enzyme in the CSF, as well as in the main folate transporter, folate receptor alpha (FRα) and folate. In tissue, we found a switch in the pathway of folate supply to the cerebral cortex in AD compared to neurologically normal brains. FRα switched from entry through FDH-positive astrocytes in normal, to entry through glial fibrillary acidic protein (GFAP)-positive astrocytes in the AD cortex. Moreover, this switch correlated with an apparent change in metabolic direction to hypermethylation of neurons in AD. Our data suggest that the reduction in FDH in CSF prohibits FRα-folate entry via FDH-positive astrocytes and promotes entry through the GFAP pathway directly to neurons for hypermethylation. This data may explain some of the cognitive decline not attributable to the loss of neurons alone and presents a target for potential treatment.  相似文献   
996.
The attachment of enteropathogenic Escherichia coli (EPEC) to intestinal epithelial cells is facilitated by several adhesins; however, the individual host-cell receptors for pili-mediated adherence have not been fully characterized. In this study, we evaluated the hypothesis that the E. coli common pilus (ECP) tip adhesin protein EcpD mediates attachment of EPEC to several extracellular matrix (ECM) glycoproteins (fibronectin, laminin, collagens I and IV, and mucin). We found that the ΔecpA mutant, which lacks production of the EcpA filament but retains EcpD on the surface, adhered to these glycoproteins below the wild-type levels, while the ΔecpD mutant, which does not display EcpA or EcpD, bound significantly less to these host glycoproteins. In agreement, a purified recombinant EcpD subunit bound significantly more than EcpA to laminin, fibronectin, collagens I and IV, and mucin in a dose-dependent manner. These are compelling data that strongly suggest that ECP-producing EPEC may bind to host ECM glycoproteins and mucins through the tip adhesin protein EcpD. This study highlights the versatility of EPEC to bind to different host proteins and suggests that the interaction of ECP with the host’s ECM glycoproteins may facilitate colonization of the intestinal mucosal epithelium.  相似文献   
997.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder; it is the most common cause of dementia and has no treatment. It is characterized by two pathological hallmarks, the extracellular deposits of amyloid beta (Aβ) and the intraneuronal deposits of Neurofibrillary tangles (NFTs). Yet, those two hallmarks do not explain the full pathology seen with AD, suggesting the involvement of other mechanisms. Neuroinflammation could offer another explanation for the progression of the disease. This review provides an overview of recent advances on the role of the immune cells’ microglia and astrocytes in neuroinflammation. In AD, microglia and astrocytes become reactive by several mechanisms leading to the release of proinflammatory cytokines that cause further neuronal damage. We then provide updates on neuroinflammation diagnostic markers and investigational therapeutics currently in clinical trials to target neuroinflammation.  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号