首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   13篇
  国内免费   1篇
电工技术   9篇
化学工业   62篇
金属工艺   9篇
机械仪表   8篇
建筑科学   5篇
能源动力   24篇
轻工业   22篇
石油天然气   1篇
无线电   37篇
一般工业技术   107篇
冶金工业   79篇
原子能技术   2篇
自动化技术   50篇
  2024年   2篇
  2023年   7篇
  2022年   9篇
  2021年   10篇
  2020年   9篇
  2019年   10篇
  2018年   6篇
  2017年   11篇
  2016年   14篇
  2015年   9篇
  2014年   17篇
  2013年   28篇
  2012年   13篇
  2011年   24篇
  2010年   10篇
  2009年   16篇
  2008年   7篇
  2007年   8篇
  2006年   13篇
  2005年   6篇
  2004年   6篇
  2003年   2篇
  2002年   7篇
  2001年   6篇
  2000年   9篇
  1999年   10篇
  1998年   12篇
  1997年   14篇
  1996年   7篇
  1995年   7篇
  1994年   6篇
  1993年   8篇
  1992年   10篇
  1991年   10篇
  1990年   7篇
  1989年   6篇
  1988年   9篇
  1987年   5篇
  1986年   6篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1982年   8篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1973年   2篇
排序方式: 共有415条查询结果,搜索用时 15 毫秒
61.
The defect centres formed in the TL phosphor CaSO4:Dy,Ag are studied using the technique of Electron Spin Resonance. The Ag co-doped phosphor exhibits three glow peaks around 130, 220 and 375 degrees C in contrast with the two glow peaks observed in the CaSO4:Dy phosphor at 130 and 220 degrees C at a gamma ray dose of 1Gy. ESR studies show that the additional peak at 375 degrees C correlates with a Ag2+ centre formed due to gamma irradiation and observable only below -170 degrees C. The Ag2+ centre is characterised by an axial g-tensor with principal values g(parallel) = 2.38 and g(perpendicular) = 2.41. ESR studies further indicate that the precursor to a centre observable at low temperature (-170 degrees C) appears to act as the recombination centre for the TL peak at 375 degrees C; this radical is characterised by the g-values g(parallel) = 2.0023 and g(perpendicular) = 2.0038 and is assigned to SO3- radical. It is observed that there is more incorporation of Ag in the CaSO4:Dy system as compared with that in pure CaSO4 system.  相似文献   
62.
63.
Due to the widespread popularity and usage of Internet of things (IoT)‐enabled devices, there is an exponential increase in the data traffic generated from these IoT devices. Most of these devices communicate with each other using heterogeneous links having constraints such as latency, throughput, and interference from concurrent transmissions. This results in an extra burden on the underlying communication infrastructure to manage the traffic within these constraints between source and destination. However, most of the existing applications use different Transmission Control Protocol (TCP) variants for traffic management between these devices and are dependent on the stage of the sender, irrespective of the application types and link characteristics. Each operating system (OS) has different TCP variant for all applications, irrespective of path characteristics. Hence, a single TCP variant cannot select the best suitable link, which results in degradation in throughput compared to the existing default. Moreover, it cannot use the full capacity of the available link for different applications and network links, especially in heterogeneous network such as IoT. To cope up with these challenges, in this paper, we propose an Adaptive and Dynamic TCP Interface Architecture (ADYTIA). ADYTIA allows the usage of different TCP variants based on application and link characteristics, irrespective of the physical links of the entire path. It allows the usage of different TCP variants based on their design principle across heterogeneous technologies, platforms, and applications. ADYTIA is implemented on NS‐2 and Linux kernel for real testbed experiments. Its ability to select the best suitable TCP variant results in 20% to 80% improvement in throughput compared with the existing default and single TCP variant on Linux and Windows.  相似文献   
64.
Metal–organic frameworks (MOFs) have emerged as an important and unique class of functional crystalline hybrid porous materials in the past two decades. Due to their modular structures and adjustable pore system, such distinctive materials have exhibited remarkable prospects in key applications pertaining to adsorption such as gas storage, gas and liquid separations, and trace impurity removal. Evidently, gaining a better understanding of the structure–property relationship offers great potential for the enhancement of a given associated MOF property either by structural adjustments via isoreticular chemistry or by the design and construction of new MOF structures via the practice of reticular chemistry. Correspondingly, the application of isoreticular chemistry paves the way for the microfine design and structure regulation of presented MOFs. Explicitly, the microfine tuning is mainly based on known MOF platforms, focusing on the modification and/or functionalization of a precise part of the MOF structure or pore system, thus providing an effective approach to produce richer pore systems with enhanced performances from a limited number of MOF platforms. Here, the latest progress in this field is highlighted by emphasizing the differences and connections between various methods. Finally, the challenges together with prospects are also discussed.  相似文献   
65.
The number of security failure discovered and disclosed publicly are increasing at a pace like never before. Wherein, a small fraction of vulnerabilities encountered in the operational phase are exploited in the wild. It is difficult to find vulnerabilities during the early stages of software development cycle, as security aspects are often not known adequately. To counter these security implications, firms usually provide patches such that these security flaws are not exploited. It is a daunting task for a security manager to prioritize patches for vulnerabilities that are likely to be exploitable. This paper fills this gap by applying different machine learning techniques to classify the vulnerabilities based on previous exploit-history. Our work indicates that various vulnerability characteristics such as severity, type of vulnerabilities, different software configurations, and vulnerability scoring parameters are important features to be considered in judging an exploit. Using such methods, it is possible to predict exploit-prone vulnerabilities with an accuracy >85%. Finally, with this experiment, we conclude that supervised machine learning approach can be a useful technique in predicting exploit-prone vulnerabilities.  相似文献   
66.
Carbonic anhydrases (CAs) are implicated in a wide range of diseases, including the upregulation of isoforms CA IX and XII in many aggressive cancers. However, effective inhibition of disease‐implicated CAs should minimally affect the ubiquitously expressed isoforms, including CA I and II, to improve directed distribution of the inhibitors to the cancer‐associated isoforms and reduce side effects. Four benzenesulfonamide‐based inhibitors were synthesized by using the tail approach and displayed nanomolar affinities for several CA isoforms. The crystal structures of the inhibitors bound to a CA IX mimic and CA II are presented. Further in silico modeling was performed with the inhibitors docked into CA I and XII to identify residues that contributed to or hindered their binding interactions. These structural studies demonstrated that active‐site residues lining the hydrophobic pocket, especially positions 92 and 131, dictate the positional binding and affinity of inhibitors, whereas the tail groups modulate CA isoform specificity. Geometry optimizations were performed on each ligand in the crystal structures and showed that the energetic penalties of the inhibitor conformations were negligible compared to the gains from active‐site interactions. These studies further our understanding of obtaining isoform specificity when designing small molecule CA inhibitors.  相似文献   
67.
Nanoindentation studies on rapidly solidified Zr80Pt20 and Zr75Pd25 binary alloys with nanocrystalline, nanoquasicrystalline, and amorphous microstructures are reported. The results indicate that the hardness and elastic modulus are the highest for a mixture of amorphous and nanoquasicrystalline state among the various microstructures studied. Nanoquasicrystalline phase has high hardness and elastic modulus in comparison to amorphous and nanocrystalline phases. The hardness to modulus ratio is close to 0.1 in both the alloys, irrespective of the phase/phase mixture studied indicating that the bonding in these alloys is of covalent nature. In Zr80Pt20, all the phases/phase mixtures have higher hardness and modulus in comparison to similar microstructures in Zr75Pd25 due to higher bond energies caused by more negative heat of mixing in the former case.  相似文献   
68.
The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.  相似文献   
69.
The oil content of 64 samples of groundnut kernels, representing 47 genotypes, was determined by the conventional Soxhlet extraction procedure (OilSOX). The values of OilSOX ranged from 403 to 536 g kg−1. The optical densities (ODs) of these samples were determined at 12 wavelengths (918, 928, 940, 950, 968, 975, 985, 998, 1010, 1023, 1037 and 1045 nm) in the near‐infrared (NIR) region using a food composition analyser (essentially a filter‐based NIR spectrophotometer). The instrument also recorded the temperatures of the sample (TempS) and the air (TempA) surrounding it. A sample holder (75 mm × 150 mm; optical path length 25 mm) was used for optical density measurement. The data obtained were subjected to multiple linear regression analysis using the ODs at 12 wavelengths, TempS and TempA as the independent (predictor) variables, and OilSOX as the dependent variable. The multiple linear regression equation comprising 14 predictors showed a significant relationship between predicted values of oil content (OilNIR) and OilSOX. The standard error of calibration and the coefficient of determination for calibration (R) were 3.54 and 0.821 respectively, while the standard error of prediction and the coefficient of determination for prediction were 5.82 and 0.865 respectively. The ratio of standard error of calibration and standard error of prediction was 0.608. The differences between OilSOX and OilNIR were less than ± 20 g kg−1 for samples having oil contents in the range from 480 to 510 g kg−1. However, for samples having OilSOX lower than 480 g kg−1 or higher than 510 g kg−1, differences greater than ± 20 g kg−1 were observed. There exists scope for further refining the regression equation by using a larger number of samples for generating optical data. The results demonstrated the potential of NIR transmittance spectroscopy for determining the oil content of groundnuts in a non‐destructive manner. © 2000 Society of Chemical Industry  相似文献   
70.
Polymerization of synthetic monomers is known to be influenced by the solvent, initiator system, dilution, temperature, etc. Substrates like starch granules, when used for graft copolymerization, can be expected to provide a drastically different environment for the monomers (as compared to the bulk of the solvent medium), and therefore we predicted this to influence the kinetics of polymerization and stereoregularity of the synthetic polymer. This was investigated with respect to polymerization of methacrylic acid with starch. The rate of methacrylic acid polymerization was found to be significantly higher in grafting with starch as compared to homopolymerization in the absence of starch. Control of molecular weight of the grafted chains was achieved by use of chain transfer agents, and the chain transfer constants for graft copolymerization were determined for two chain transfer agents. The polydispersity of the grafted chains was also found to be dependent on the chain transfer agents. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 397–403, 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号