CaxBa1−xTiO3 (CBT) fine particles doped with red luminescence center of Pr3+ ions (Pr: CBT) were successfully synthesized by salt assisted spray pyrolysis (SASP) process. Scanning electronic microscope
(SEM) and laser scattering analysis demonstrate that salt can be removed from the surface of particles by washing with Milli-Q
water and the particles can be further separated by ball-milling to get well-dispersed Pr3+ ions doped CBT fine particles. The luminescence properties, such as photoluminescence (PL) and mechanoluminescence (ML),
of as-synthesized Pr: CBT particles were investigated. For Pr: CBT fine particles with different Ca molar ratios, all the
samples show one emission at 612 nm, with increasing Ca molar ratio, PL intensity of Pr: CBT fine particles become stronger
and stronger. When pressure was loaded on the Pr: CBT pellet, mechanoluminescence(ML) emission was measured. The results show
that the ML intensity is proportional to the applied pressure. 相似文献
Behaviour of hardening and serration yield of a Fe-Ni-Cr alloy under isothermal cycling (ISC) and out-phase TMF was studied
on the basis of varied hysteresis loops. Cycling hardening and serrated yielding for ISC depend on the temperature and the
total strain range, stronger hardening with serrated yielding at higher strain range under ISC at 600 °C, but no hardening
and serrated yielding occurred under ISC at 800 °C. Stronger hardening with stress serration occurred at the thermal path
going to the lowest temperature, no stress serration occurred at the highest temperature under the out-phase. The hardening
also depends on the total strain range, higher total strain range with lower cycling temperature resulted in a stronger hardening
and remarkable serration yielding behavior. Weaker hardening without serrated yielding occurred at near 800 °C may due to
an obvious cycling stress drop under out-phase TMF. Change in the shape of the hysteresis loops also expresses the degree
of the damage of the tested alloy under out-phase and ISC. 相似文献
Silver powder was fabricated by spray pyrolysis, using 2%–20% AgNO3 solution, 336–500 mL/h flux of AgNO3 solution, 0.28–0.32 MPa flux of carrier gas and in the 620–820 °C temperature range. The effects of furnace set temperature,
concentration of AgNO3 aqueous solution, flux of AgNO3 aqueous solution as well as carrier gas on the morphology and particle size distribution of silver powder, were investigated.
The experimental results showed that with the high concentration of AgNO3 aqueous solution, the average grain size of silver decreased with the increasing of furnace set temperature. But the gain
size distribution was not homogenous, the discontinuous grain growth occurred. With the low concentration of AgNO3 aqueous solution, the higher furnace set temperature made the nano sliver grains sintered together to grow. Nano silver powder
about 100 nm was fabricated by spray pyrolysis, using 2wt% AgNO3 solutions, 336 mL/h flux of AgNO3 aqueous solution, 0.32 MPa flux of carrier gas at 720 °C furnace set temperature. 相似文献
Poly(vinyl alcohol)/Hydroxylapatite (PVA/HA) composite hydrogel was prepared with poly(vinyl alcohol) and hydroxylapatite
as raw materials, using the method of repeated freezing and thawing. The morphologies of PVA/HA composite hydrogel were observed
by means of high-accuracy 3D profiler and scanning electron microscope (SEM). The compressive elastic modulus and the stress
relaxation characteristics of PVA/HA composite hydrogel were measured using the flat-head cylinder indenter. The friction
and wear tests between PVA/HA composite hydrogel and bovine knee articular cartilage were performed on the micro-tribometer.
The worn morphologies of PVA/HA composite hydrogel were observed with environmental scanning electron microscope (ESEM). The
results showed that PVA/HA composite hydrogel has the cross-link network microstructure which is similar to that of the natural
bovine knee articular cartilages. With the increase of freezing-thawing cycles and the HA content, the degree of cross-link
and the crystallization of PVA/HA composite hydrogel both increase, the elastic modulus increases evidently, the rate of stress
relaxation is improved and the value of balance stress decreases. The friction coefficient decreases with the increase of
the freezing-thawing cycles and the HA content. The more the freezing-thawing cycles are, the earlier the friction coefficient
reaches the stable balance value. The friction deformation depth between PVA/HA composite hydrogel and bovine knee articular
cartilage is inversely proportional to freezing-thawing cycles and the HA content. The main wear mechanisms of PVA/HA composite
hydrogel are plastic flowing and adhesive flaking. The wear severity degree decreases with the increase of freezing-thawing
cycles and the HA content.
Supported by Key Program of the National Natural Science Foundation of China (Grant No. 50535050), Program for New Century
Excellent Talents in University (Grant No. NCET-06-0479) and Natural Science Foundation of Jiangsu Province (Grant No. BK2005403) 相似文献
The overall behavior of concrete depends on its meso structures such as aggregate shape, interface status, and mortar matrix
property. The two key meso structure characters of concrete, bond status of interface and nonlinear property of matrix, are
considered in focus. The variational structure principle is adopted to establish the macro-meso constitutive law of concrete.
Specially, a linear reference composite material is selected to make its effective behavior approach the nonlinear overall
behavior of concrete. And the overall property of linear reference composite can be estimated by classical estimation method
such as self-consistent estimates method and Mori-Tanaka method. This variational structure method involves an optimum problem
ultimately. Finally, the macro-meso constitutive law of concrete is established by optimizing the shear modulus of matrix
of the linear reference composite. By analyzing the constitutive relation of concrete established, we find that the brittleness
of concrete stems from the imperfect interface and the shear dilation property of concrete comes from the micro holes contained
in concrete.
Supported by the National Natural Science Foundation of China (Grant Nos. 50679022, 90510017, 50539090) and National Basic
Research Program of China (Grant No. 2007CB714104) 相似文献
The ablation in solid-propellant rocket nozzle is a coupling process resulted by chemistry, heat and mass transfer. Based on the heat and mass transfer theory, the aero-thermo-dynamic, and thermo-chemical kinetics, the thermal-chemical ablation model is established. Simulations are completed on the heat flow field and chemical ablation in the nozzle with different concentrations, frequency factors and activation energy of H2. The calculation results show that the concentration and the activation energy of H... 相似文献
This paper proposes a sequential design scheme for switching ℌ∞ LPV (Linear Parameter-Varying) control, aiming to reduce the computational complexity of the associated optimization problem. Different from the traditional approach that simultaneously designs switching LPV controllers and solves a high-dimensional optimization problem, the proposed sequential design approach renders a bundle of low-dimensional optimization problems to be solved iteratively. Individual ℌ∞ LPV controller for each subregion is synthesized by independent PLMIs (Parametric Linear Matrix Inequalities) to guarantee ℌ∞ performance, and controller variables are interpolated on the overlapped subregions such that the ℌ∞ performance is also guaranteed on the overlapped subregion. Numerical examples are used to demonstrate the effectiveness of this method to reduce the computational load in each design iteration and improved ℌ∞ performance over the conventional simultaneous design method with well-tuned interpolation coefficient.