首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7835篇
  免费   491篇
  国内免费   9篇
电工技术   109篇
综合类   2篇
化学工业   2112篇
金属工艺   128篇
机械仪表   229篇
建筑科学   314篇
矿业工程   29篇
能源动力   308篇
轻工业   1121篇
水利工程   63篇
石油天然气   35篇
无线电   548篇
一般工业技术   1199篇
冶金工业   569篇
原子能技术   60篇
自动化技术   1509篇
  2024年   22篇
  2023年   103篇
  2022年   285篇
  2021年   330篇
  2020年   225篇
  2019年   252篇
  2018年   303篇
  2017年   328篇
  2016年   299篇
  2015年   253篇
  2014年   339篇
  2013年   632篇
  2012年   486篇
  2011年   579篇
  2010年   412篇
  2009年   452篇
  2008年   385篇
  2007年   357篇
  2006年   305篇
  2005年   231篇
  2004年   181篇
  2003年   195篇
  2002年   164篇
  2001年   111篇
  2000年   108篇
  1999年   100篇
  1998年   140篇
  1997年   123篇
  1996年   99篇
  1995年   66篇
  1994年   63篇
  1993年   47篇
  1992年   32篇
  1991年   39篇
  1990年   29篇
  1989年   32篇
  1988年   22篇
  1987年   15篇
  1986年   17篇
  1985年   20篇
  1984年   11篇
  1983年   14篇
  1982年   18篇
  1981年   9篇
  1980年   12篇
  1979年   12篇
  1978年   20篇
  1977年   7篇
  1976年   20篇
  1973年   7篇
排序方式: 共有8335条查询结果,搜索用时 0 毫秒
81.
Camera lens distortion is crucial to obtain the best performance cameral model. Up to now, different techniques exist, which try to minimize the calibration error using different lens distortion models or computing them in different ways. Some compute lens distortion camera parameters in the camera calibration process together with the intrinsic and extrinsic ones. Others isolate the lens distortion calibration without using any template and basing the calibration on the deformation in the image of some features of the objects in the scene, like straight lines or circles. These lens distortion techniques which do not use any calibration template can be unstable if a complete camera lens distortion model is computed. They are named non-metric calibration or self-calibration methods.Traditionally a camera has been always best calibrated if metric calibration is done instead of self-calibration. This paper proposes a metric calibration technique which computes the camera lens distortion isolated from the camera calibration process under stable conditions, independently of the computed lens distortion model or the number of parameters. To make it easier to resolve, this metric technique uses the same calibration template that will be used afterwards for the calibration process. Therefore, the best performance of the camera lens distortion calibration process is achieved, which is transferred directly to the camera calibration process.  相似文献   
82.
Automatic metro map layout using multicriteria optimization   总被引:1,自引:0,他引:1  
This paper describes an automatic mechanism for drawing metro maps. We apply multicriteria optimization to find effective placement of stations with a good line layout and to label the map unambiguously. A number of metrics are defined, which are used in a weighted sum to find a fitness value for a layout of the map. A hill climbing optimizer is used to reduce the fitness value, and find improved map layouts. To avoid local minima, we apply clustering techniques to the map-the hill climber moves both stations and clusters when finding improved layouts. We show the method applied to a number of metro maps, and describe an empirical study that provides some quantitative evidence that automatically-drawn metro maps can help users to find routes more efficiently than either published maps or undistorted maps. Moreover, we have found that, in these cases, study subjects indicate a preference for automatically-drawn maps over the alternatives.  相似文献   
83.
We present topological spines--a new visual representation that preserves the topological and geometric structure of a scalar field. This representation encodes the spatial relationships of the extrema of a scalar field together with the local volume and nesting structure of the surrounding contours. Unlike other topological representations, such as contour trees, our approach preserves the local geometric structure of the scalar field, including structural cycles that are useful for exposing symmetries in the data. To obtain this representation, we describe a novel mechanism based on the extraction of extremum graphs--sparse subsets of the Morse-Smale complex that retain the important structural information without the clutter and occlusion problems that arise from visualizing the entire complex directly. Extremum graphs form a natural multiresolution structure that allows the user to suppress noise and enhance topological features via the specification of a persistence range. Applications of our approach include the visualization of 3D scalar fields without occlusion artifacts, and the exploratory analysis of high-dimensional functions.  相似文献   
84.
A new formulation for multiway spectral clustering is proposed. This method corresponds to a weighted kernel principal component analysis (PCA) approach based on primal-dual least-squares support vector machine (LS-SVM) formulations. The formulation allows the extension to out-of-sample points. In this way, the proposed clustering model can be trained, validated, and tested. The clustering information is contained on the eigendecomposition of a modified similarity matrix derived from the data. This eigenvalue problem corresponds to the dual solution of a primal optimization problem formulated in a high-dimensional feature space. A model selection criterion called the Balanced Line Fit (BLF) is also proposed. This criterion is based on the out-of-sample extension and exploits the structure of the eigenvectors and the corresponding projections when the clusters are well formed. The BLF criterion can be used to obtain clustering parameters in a learning framework. Experimental results with difficult toy problems and image segmentation show improved performance in terms of generalization to new samples and computation times.  相似文献   
85.
86.
This paper shows that breaking the barrier of 1 triangle/clock rasterization rate for microtriangles in modern GPU architectures in an efficient way is possible. The fixed throughput of the special purpose culling and triangle setup stages of the classic pipeline limits the GPU scalability to rasterize many triangles in parallel when these cover very few pixels. In contrast, the shader core counts and increasing GFLOPs in modern GPUs clearly suggests parallelizing this computation entirely across multiple shader threads, making use of the powerful wide-ALU instructions. In this paper, we present a very efficient SIMD-like rasterization code targeted at very small triangles that scales very well with the number of shader cores and has higher performance than traditional edge equation based algorithms. We have extended the ATTILA GPU shader ISA (del Barrioet al. in IEEE International Symposium on Performance Analysis of Systems and Software, pp. 231–241, 2006) with two fixed point instructions to meet the rasterization precision requirement. This paper also introduces a novel subpixel Bounding Box size optimization that adjusts the bounds much more finely, which is critical for small triangles, and doubles the 2×2-pixel stamp test efficiency. The proposed shader rasterization program can run on top of the original pixel shader program in such a way that selected fragments are rasterized, attribute interpolated and pixel shaded in the same pass. Our results show that our technique yields better performance than a classic rasterizer at 8 or more shader cores, with speedups as high as 4× for 16 shader cores.  相似文献   
87.
The aim of this paper is to show how the hybridization of a multi-objective evolutionary algorithm (MOEA) and a local search method based on the use of rough set theory is a viable alternative to obtain a robust algorithm able to solve difficult constrained multi-objective optimization problems at a moderate computational cost. This paper extends a previously published MOEA [Hernández-Díaz AG, Santana-Quintero LV, Coello Coello C, Caballero R, Molina J. A new proposal for multi-objective optimization using differential evolution and rough set theory. In: 2006 genetic and evolutionary computation conference (GECCO’2006). Seattle, Washington, USA: ACM Press; July 2006], which was limited to unconstrained multi-objective optimization problems. Here, the main idea is to use this sort of hybrid approach to approximate the Pareto front of a constrained multi-objective optimization problem while performing a relatively low number of fitness function evaluations. Since in real-world problems the cost of evaluating the objective functions is the most significant, our underlying assumption is that, by aiming to minimize the number of such evaluations, our MOEA can be considered efficient. As in its previous version, our hybrid approach operates in two stages: in the first one, a multi-objective version of differential evolution is used to generate an initial approximation of the Pareto front. Then, in the second stage, rough set theory is used to improve the spread and quality of this initial approximation. To assess the performance of our proposed approach, we adopt, on the one hand, a set of standard bi-objective constrained test problems and, on the other hand, a large real-world problem with eight objective functions and 160 decision variables. The first set of problems are solved performing 10,000 fitness function evaluations, which is a competitive value compared to the number of evaluations previously reported in the specialized literature for such problems. The real-world problem is solved performing 250,000 fitness function evaluations, mainly because of its high dimensionality. Our results are compared with respect to those generated by NSGA-II, which is a MOEA representative of the state-of-the-art in the area.  相似文献   
88.
In this work we present a general (mono and multiobjective) optimization framework for the technological improvement of biochemical systems. The starting point of the method is a mathematical model in ordinary differential equations (ODEs) of the investigated system, based on qualitative biological knowledge and quantitative experimental data. In the method we take advantage of the special structural features of a family of ODEs called power-law models to reduce the computational complexity of the optimization program. In this way, the genetic manipulation of a biochemical system to meet a certain biotechnological goal can be expressed as an optimization program with some desired properties such as linearity or convexity.The general method of optimization is presented and discussed in its linear and geometric programming versions. We furthermore illustrate the use of the method by several real case studies. We conclude that the technological improvement of microorganisms can be afforded using the combination of mathematical modelling and optimization. The systematic nature of this approach facilitates the redesign of biochemical systems and makes this a predictive exercise rather than a trial-and-error procedure.  相似文献   
89.
In this paper we present a new parallel multi-frontal direct solver, dedicated for the hp Finite Element Method (hp-FEM). The self-adaptive hp-FEM generates in a fully automatic mode, a sequence of hp-meshes delivering exponential convergence of the error with respect to the number of degrees of freedom (d.o.f.) as well as the CPU time, by performing a sequence of hp refinements starting from an arbitrary initial mesh. The solver constructs an initial elimination tree for an arbitrary initial mesh, and expands the elimination tree each time the mesh is refined. This allows us to keep track of the order of elimination for the solver. The solver also minimizes the memory usage, by de-allocating partial LU factorizations computed during the elimination stage of the solver, and recomputes them for the backward substitution stage, by utilizing only about 10% of the computational time necessary for the original computations. The solver has been tested on 3D Direct Current (DC) borehole resistivity measurement simulations problems. We measure the execution time and memory usage of the solver over a large regular mesh with 1.5 million degrees of freedom as well as on the highly non-regular mesh, generated by the self-adaptive hphp-FEM, with finite elements of various sizes and polynomial orders of approximation varying from p=1p=1 to p=9p=9. From the presented experiments it follows that the parallel solver scales well up to the maximum number of utilized processors. The limit for the solver scalability is the maximum sequential part of the algorithm: the computations of the partial LU factorizations over the longest path, coming from the root of the elimination tree down to the deepest leaf.  相似文献   
90.
One of the main problems of robots is the lack of adaptability and the need for adjustment every time the robot changes its working place. To solve this, we propose a learning approach for mobile robots using a reinforcement-based strategy and a dynamic sensor-state mapping. This strategy, practically parameterless, minimises the adjustments needed when the robot operates in a different environment or performs a different task.Our system will simultaneously learn the state space and the action to execute on each state. The learning algorithm will attempt to maximise the time before a robot failure in order to obtain a control policy suited to the desired behaviour, thus providing a more interpretable learning process. The state representation will be created dynamically, starting with an empty state space and adding new states as the robot finds new situations that has not seen before. A dynamic creation of the state representation will avoid the classic, error-prone and cyclic process of designing and testing an ad hoc representation. We performed an exhaustive study of our approach, comparing it with other classic strategies. Unexpectedly, learning both perception and action does not increase the learning time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号