首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121752篇
  免费   13066篇
  国内免费   6151篇
电工技术   8844篇
技术理论   14篇
综合类   9244篇
化学工业   18681篇
金属工艺   6952篇
机械仪表   7678篇
建筑科学   9020篇
矿业工程   3505篇
能源动力   3689篇
轻工业   11101篇
水利工程   2732篇
石油天然气   5756篇
武器工业   1420篇
无线电   14706篇
一般工业技术   13440篇
冶金工业   5368篇
原子能技术   1528篇
自动化技术   17291篇
  2025年   42篇
  2024年   2268篇
  2023年   2377篇
  2022年   4166篇
  2021年   5447篇
  2020年   4312篇
  2019年   3598篇
  2018年   3647篇
  2017年   3987篇
  2016年   3737篇
  2015年   5257篇
  2014年   6285篇
  2013年   7652篇
  2012年   8577篇
  2011年   9192篇
  2010年   8236篇
  2009年   7882篇
  2008年   7873篇
  2007年   7297篇
  2006年   6827篇
  2005年   5543篇
  2004年   4075篇
  2003年   3447篇
  2002年   3430篇
  2001年   3009篇
  2000年   2354篇
  1999年   2072篇
  1998年   1618篇
  1997年   1374篇
  1996年   1096篇
  1995年   926篇
  1994年   673篇
  1993年   565篇
  1992年   416篇
  1991年   363篇
  1990年   257篇
  1989年   220篇
  1988年   168篇
  1987年   105篇
  1986年   115篇
  1985年   85篇
  1984年   42篇
  1983年   32篇
  1982年   41篇
  1981年   44篇
  1980年   46篇
  1979年   26篇
  1977年   18篇
  1976年   23篇
  1973年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Amino acid decarboxylases convert amino acids into different biogenic amines which regulate diverse biological processes. Therefore, identifying the substrates of amino acid decarboxylases is critical for investigating the function of the decarboxylases, especially for the new genes predicted to be amino acid decarboxylases. In the present work, we have established a simple and efficient method to identify the substrates and enzymatic activity of amino acid decarboxylases based on LC-MS methods. We chose GAD65 and AADC as models to validate our method. GAD65 and AADC were expressed in HEK 293T cells and purified through immunoprecipitation. The purified amino acid decarboxylases were subjected to enzymatic reaction with different substrate mixtures in vitro. LC-MS analysis of the reaction mixture identified depleted or accumulated metabolites, which corresponded to candidate enzyme substrates and products, respectively. Our method successfully identified the substrates and products of known amino acid decarboxylases. In summary, our method can efficiently identify the substrates and products of amino acid decarboxylases, which will facilitate future amino acid decarboxylase studies.  相似文献   
92.
In vitro expansion-mediated replicative senescence has severely limited the clinical applications of mesenchymal stem cells (MSCs). Accumulating studies manifested that nicotinamide adenine dinucleotide (NAD+) depletion is closely related to stem cell senescence and mitochondrial metabolism disorder. Promoting NAD+ level is considered as an effective way to delay aging. Previously, we have confirmed that nicotinamide mononucleotide (NMN), a precursor of NAD+, can alleviate NAD+ deficiency-induced MSC senescence. However, whether NMN can attenuate MSC senescence and its underlying mechanisms are still incompletely clear. The present study herein showed that late passage (LP) MSCs displayed lower NAD+ content, reduced Sirt3 expression and mitochondrial dysfunction. NMN supplementation leads to significant increase in intracellular NAD+ level, NAD+/ NADH ratio, Sirt3 expression, as well as ameliorated mitochondrial function and rescued senescent MSCs. Additionally, Sirt3 over-expression relieved mitochondrial dysfunction, and retrieved senescence-associated phenotypic features in LP MSCs. Conversely, inhibition of Sirt3 activity via a selective Sirt3 inhibitor 3-TYP in early passage (EP) MSCs resulted in aggravated cellular senescence and abnormal mitochondrial function. Furthermore, NMN administration also improves 3-TYP-induced disordered mitochondrial function and cellular senescence in EP MSCs. Collectively, NMN replenishment alleviates mitochondrial dysfunction and rescues MSC senescence through mediating NAD+/Sirt3 pathway, possibly providing a novel mechanism for MSC senescence and a promising strategy for anti-aging pharmaceuticals.  相似文献   
93.
Prostate cancer (PCa) is a common malignant cancer of the urinary system. Drug therapy, chemotherapy, and radical prostatectomy are the primary treatment methods, but drug resistance and postoperative recurrence often occur. Therefore, seeking novel anti-tumor compounds with high efficiency and low toxicity from natural products can produce a new tumor treatment method. Matijin-Su [N-(N-benzoyl-L-phenylalanyl)-O-acetyl-L-phenylalanol, MTS] is a phenylalanine dipeptide monomer compound that is isolated from the Chinese ethnic medicine Matijin (Dichondra repens Forst.). Its derivatives exhibit various pharmacological activities, especially anti-tumor. Among them, the novel MTS derivative HXL131 has a significant inhibitory effect against prostate tumor growth and metastasis. This study is designed to investigate the effects of HXL131 on the growth and metastasis of human PCa cell lines PC3 and its molecular mechanism through in vitro experiments combined with proteomics, molecular docking, and gene silencing. The in vitro results showed that HXL131 concentration dependently inhibited PC3 cell proliferation, induced apoptosis, arrested cell cycle at the G2/M phase, and inhibited cell migration capacity. A proteomic analysis and a Western blot showed that HXL131 up-regulated the expression of proliferation, apoptosis, cell cycle, and migration-related proteins CYR61, TIMP1, SOD2, IL6, SERPINE2, DUSP1, TNFSF9, OSMR, TNFRSF10D, and TNFRSF12A. Molecular docking, a cellular thermal shift assay (CETSA), and gene silencing showed that HXL131 had a strong binding affinity with DUSP1 and TNFSF9, which are important target genes for inhibiting the growth and metastasis of PC3 cells. This study demonstrates that HXL131 exhibited excellent anti-prostate cancer activity and inhibited the growth and metastasis of prostate cancer cells by regulating the expression of DUSP1 and TNFSF9.  相似文献   
94.
Alzheimer’s disease (AD) is one of the most common forms of dementia, closely related to epigenetic factors. N6-methyladenosine (m6A) is the most abundant RNA modification, affecting the pathogenesis and development of neurodegenerative diseases. This study was the first exploration of the combined role of 25 common m6A RNA methylation regulators in AD through the integrated bioinformatics approaches. The 14 m6A regulators related to AD were selected by analyzing differences between AD patients and normal controls. Based on the selected m6A regulators, AD patients could be well classified into two m6A models using consensus clustering. The two clusters of patients had different immune profiles, and m6A regulators were associated with the components of immune cells. Additionally, there were 19 key AD genes obtained by screening differential genes through weighted gene co-expression network and least absolute shrinkage and selection operator regression analysis, which were highly associated with important m6A regulators during the occurrence of AD. More interestingly, NOTCH2 and NME1 could be potential targets for m6A regulation of AD. Taken together, these findings indicate that dysregulation of m6A methylation affects the occurrence of AD and is vital for the subtype classification and immune infiltration of AD.  相似文献   
95.
Inflammation plays an important role in the innate immune response, yet overproduction of inflammation can lead to a variety of chronic diseases associated with the innate immune system; therefore, modulation of the excessive inflammatory response has been considered a major strategy in the treatment of inflammatory diseases. Activation of the ROS/NLRP3/IL-1β signaling axis has been suggested to be a key initiating phase of inflammation. Our previous study found that microbe-derived antioxidants (MA) are shown to have excellent antioxidant and anti-inflammatory properties; however, the mechanism of action of MA remains unclear. The current study aims to investigate whether MA could protect cells from LPS-induced oxidative stress and inflammatory responses by modulating the Nrf2-ROS-NLRP3-IL-1β signaling pathway. In this study, we find that MA treatment significantly alleviates LPS-induced oxidative stress and inflammatory responses in RAW264.7 cells. MA significantly reduce the accumulation of ROS in RAW264.7 cells, down-regulate the levels of pro-inflammatory factors (TNF-α and IL-6), inhibit NLRP3, ASC, caspase-1 mRNA, and protein levels, and reduce the mRNA, protein levels, and content of inflammatory factors (IL-1β and IL-18). The protective effect of MA is significantly reduced after the siRNA knockdown of the NLRP3 gene, presumably related to the ability of MA to inhibit the ROS-NLRP3-IL-1β signaling pathway. MA is able to reduce the accumulation of ROS and alleviate oxidative stress by increasing the content of antioxidant enzymes, such as SOD, GSH-Px, and CAT. The protective effect of MA may be due to its ability of MA to induce Nrf2 to enter the nucleus and initiate the expression of antioxidant enzymes. The antioxidant properties of MA are further enhanced in the presence of the Nrf2 activator SFN. After the siRNA knockdown of the Nrf2 gene, the antioxidant and anti-inflammatory properties of MA are significantly affected. These findings suggest that MA may inhibit the LPS-stimulated ROS/NLRP3/IL-1β signaling axis by activating Nrf2-antioxidant signaling in RAW264.7 cells. As a result of this study, MA has been found to alleviate inflammatory responses and holds promise as a therapeutic agent for inflammation-related diseases.  相似文献   
96.
97.
98.
Brucellosis is a severe zoonotic infectious disease caused by the infection of the Brucella, which is widespread and causes considerable economic losses in underdeveloped areas. Brucella is a facultative intracellular bacteria whose main target cells for infection are macrophages, placental trophoblast cells and dendritic cells. The main clinical signs of Brucella infection in livestock are reproductive disorders and abortion. At present, the pathogenesis of placentitis or abortion caused by Brucella in livestock is not fully understood, and further research on the effect of Brucella on placental development is still necessary. This review will mainly introduce the research progress of Brucella infection of placental trophoblast cells as well as the inflammatory response caused by it, explaining the molecular regulation mechanism of Brucella leading to reproductive system disorders and abortion, and also to provide the scientific basis for revealing the pathogenesis and infection mechanism of Brucella.  相似文献   
99.
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease with a rapidly increasing number of cases worldwide. This study aimed to evaluate the effects of Lactobacillus sakei MJM60958 (MJM60958) on NAFLD in vitro and in vivo. In in vitro tests, MJM60958 significantly inhibited lipid accumulation by 46.79% in HepG2 cells stimulated with oleic acid and cholesterol (OA-C). Moreover, MJM60958 showed safe and probiotic characteristics in vitro. In the animal study, MJM60958 administration in a high-fat diet-induced NAFLD mouse model significantly reduced body weight and liver weight, and controlled aspartate aminotransferase (ALT), aspartate transaminase (AST), triglyceride (TG), urea nitrogen (BUN), and uric acid (UA) levels in the blood, which are features of NAFLD. Further, treatment with MJM60958 also reduced steatosis scores in liver tissues, serum leptin and interleukin, and increased serum adiponectin content. Moreover, administration of MJM60958 resulted in a significantly decreased expression of some genes and proteins which are related to lipid accumulation, such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1 (SREBP-1), and also upregulated genes and protein expression of lipid oxidation such as peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1a (CPT1A). Administration of MJM60958 increased the relative abundance of specific microbial taxa such as Verrucomicrobia, which are abundant in non-NAFLD mice, and reduced Firmicutes, which are a major group in NAFLD mice. MJM60958 affected the modulation of gut microbiota and altered the strain profile of short-chain fatty acids (SCFAs) production in the cecum by reduced lactic acid and enhanced acetic acid production. Overall, MJM60958 showed potential as a probiotic that can prevent and treat NAFLD.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号