首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   735篇
  免费   41篇
  国内免费   2篇
电工技术   15篇
综合类   1篇
化学工业   201篇
金属工艺   8篇
机械仪表   7篇
建筑科学   22篇
矿业工程   3篇
能源动力   27篇
轻工业   107篇
水利工程   4篇
石油天然气   1篇
无线电   50篇
一般工业技术   115篇
冶金工业   9篇
原子能技术   6篇
自动化技术   202篇
  2024年   1篇
  2023年   15篇
  2022年   43篇
  2021年   48篇
  2020年   28篇
  2019年   24篇
  2018年   33篇
  2017年   21篇
  2016年   34篇
  2015年   25篇
  2014年   33篇
  2013年   54篇
  2012年   68篇
  2011年   69篇
  2010年   46篇
  2009年   54篇
  2008年   39篇
  2007年   34篇
  2006年   16篇
  2005年   21篇
  2004年   12篇
  2003年   9篇
  2002年   14篇
  2001年   3篇
  2000年   2篇
  1999年   8篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有778条查询结果,搜索用时 15 毫秒
751.
Ru@MNP-MWCNT catalysts were obtained via functionalization of nanostructured carbon-based carriers (ie, MWCNT) with base molecules (ie, 2-aminophenol and ethylenediamine) followed by the complexation with RuCl3. These structures demonstrated a highly efficient behavior for the selective wet oxidation of levulinic acid and glucose to succinic acid. However, to ensure an easy recovery and high recyclability the MWCNTs nanotubes were modified by incorporation of super-paramagnetic Fe3O4 nanoparticles into porous structure. Besides the catalytic performances the resulted composites showed a good mechanical resistance.  相似文献   
752.
Composite materials from thermoplastic polyurethanes (TPUs) with biodegradable segments and microfibrillated cellulose (MFC) were developed as alternatives to traditional materials used in packaging or biomedical applications. Two TPUs were synthesized by the prepolymer method starting from different soft segments, poly(ε-caprolactone)/poly(butylene adipate) (PUBA) or poly(ε-caprolactone)/poly(ethylene oxide) (PUEO), and isophorone diisocyanate/aliphatic chain extender. Proton nuclear magnetic resonance (1H NMR) confirmed the structure and Fourier transform infrared spectroscopy (FTIR) along with scanning electron microscopy showed that the soft segments with different hydrophobicity led to a higher phase mixing in PUBA and improved microphase separation in PUEO. MFC was added in the TPUs with different soft segments to increase biocompatibility, strength, and degradation rate. A better thermal stability, a gradual increase of crystallinity and a better dispersion of MFC were noticed in PUEO composites compared to PUBA ones. The crystallinity increased with 78% and 50% in PUBA and PUEO composites with 5 wt% MFC compared to the neat polyurethanes showing the nucleating ability of MFC. In addition, the enhanced storage modulus, with 75% and 25% in PUEO and PUBA composites, highlighted the reinforcing efficiency of MFC. Therefore, the addition of MFC to the already synthesized TPUs allows tailoring the morphology and thermal properties of TPUs for industrial application.  相似文献   
753.
Lu B  Ruse C  Xu T  Park SK  Yates J 《Analytical chemistry》2007,79(4):1301-1310
We developed and compared two approaches for automated validation of phosphopeptide tandem mass spectra identified using database searching algorithms. Phosphopeptide identifications were obtained through SEQUEST searches of a protein database appended with its decoy (reversed sequences). Statistical evaluation and iterative searches were employed to create a high-quality data set of phosphopeptides. Automation of postsearch validation was approached by two different strategies. By using statistical multiple testing, we calculate a p value for each tentative peptide phosphorylation. In a second method, we use a support vector machine (SVM; a machine learning algorithm) binary classifier to predict whether a tentative peptide phosphorylation is true. We show good agreement (85%) between postsearch validation of phosphopeptide/spectrum matches by multiple testing and that from support vector machines. Automatic methods conform very well with manual expert validation in a blinded test. Additionally, the algorithms were tested on the identification of synthetic phosphopeptides. We show that phosphate neutral losses in tandem mass spectra can be used to assess the correctness of phosphopeptide/spectrum matches. An SVM classifier with a radial basis function provided classification accuracy from 95.7% to 96.8% of the positive data set, depending on search algorithm used. Establishing the efficacy of an identification is a necessary step for further postsearch interrogation of the spectra for complete localization of phosphorylation sites. Our current implementation performs validation of phosphoserine/phosphothreonine-containing peptides having one or two phosphorylation sites from data gathered on an ion trap mass spectrometer. The SVM-based algorithm has been implemented in the software package DeBunker. We illustrate the application of the SVM-based software DeBunker on a large phosphorylation data set.  相似文献   
754.
Controlling the covalent bonding of antibodies onto functionalized carbon nanotubes is a key step in the design and preparation of nanotube-based conjugates for targeting cancer cells. For this purpose, an anti-MUC1 antibody (Ab) is linked to both multi-walled (MWCNTs) and double-walled carbon nanotubes (DWCNTs) using different synthetic strategies. The presence of the Ab attached to the nanotubes is confirmed by gel electrophoresis and thermogravimetric analysis. Most importantly, molecular recognition of the antigen by surface plasmon resonance is able to determine similar Ab binding capacities for both Ab-DWCNTs and Ab-MWCNTs. These results are very relevant for the design of future receptor-targeting strategies using chemically functionalized carbon nanotubes.  相似文献   
755.
In this communication we report the use of starch films as cell substrates. To the best of our knowledge it is the first time that films prepared from native Andean starches are studied as biomaterials. For the present study 3T3 fibroblast cells were seeded in seventeen novel starch based films from different Andean crops. In order to analyze the use of these types of starch as biomedical materials, biocompatibility, viability and cell adhesion studies were performed at the third day of incubation on supplemented DMEM medium. After cultured, films made from starch of “tunta”, “muro-huayro” potato and white carrot showed the highest level of living cells and cell viability. These results indicate that native starches from Andean crops can be used for biomedical applications.  相似文献   
756.
An individual-based model, originally developed for a biofilm system, was adapted to simulate three-dimensional formation of activated sludge flocs. The model was extended to two different bacterial morphotypes (floc-forming and filamentous bacteria), allowing spatial development of the floc according to the bacterial morphology, diffusion, reaction, and growth processes. The model needed also extension with a process for attachment of individual cells. Despite being in an early stage of development, the model is already a tool that enables us to obtain useful information about the microfloc environment. The model indicates that filamentous bacterial morphology and substrate microgradients are important aspects in the formation of bacterial structures. In mass transport-limited regimes filamentous bacterial structures prevail, whereas in growth-limited regimes irregular shaped flocs with fingerlike structures are dominant. These modeling results suggest that activated sludge flocs and biofilms might be different manifestations of the same phenomena. The model results support the hypothesis that floc-macrogradients can be the most important parameter for development of bulking sludge. The model suggests that attachment has a very strong effect on floc structure, leading to enhancement of the effect of substrate microgradients.  相似文献   
757.
The effect of murta (Ugni molinae Turcz) leaves extract on water vapor permeability (WVP) and gas permeability (GP) of carboxymethylcellulose (CMC)-based films was studied. Two ecotypes of murta leaves “Soloyo Grande” (SG) and “Soloyo Chico” (SC), were analyzed for their composition (HPLC-MS) and SC extract revealed a higher concentration of flavonols than the SG extract. The film forming solution was prepared with 2 g of CMC, 0.4 ml of glycerol and 0.5 ml of sunflower oil in 100 ml of water (Control), 50 ml of water and 50 ml of each exctract (SC50 or SG50) and 100 ml of each extract (SC 100 or SG 100). The addition of murta leaves extract modified the WVP and GP of the films. The WVP decreased significantly (P?0.05) with the incorporation of SG extract in the film but not with the SC extract (P>0.05). The CO2 and O2 permeability of the films were influenced by the kind and concentration of murta leaves extract used. The CO2 permeability, with SG extract was higher than without extract (P?0.05) and with SC extract was not modified. The O2 permeability with murta leaves extract were lower than without extract. Therefore, it is possible to consider that films with SC acts only as barrier to the oxygen, but with SG the water vapor and gas barrier properties were modified, being more permeable to the CO2 and acting as barrier to O2 and water vapor.  相似文献   
758.
759.
Hybrid polymer‐plasmonic nanostructures might combine high enhancement of localized fields from metal nanoparticles with light confinement and long‐range transport in subwavelength dielectric structures. Here, the complex behavior of fluorophores coupling to Au nanoparticles within polymer nanowires, which features localized metal‐enhanced fluorescence (MEF) with unique characteristics compared to conventional structures, is reported. The intensification effect when the particle is placed in the organic filaments is remarkably higher with respect to thin films of comparable thickness, thus highlighting a specific, nanowire‐related enhancement of MEF effects. A dependence on the confinement volume in the dielectric nanowire is also indicated, with MEF significantly increasing upon reduction of the wire diameter. These findings are rationalized by finite element simulations, predicting a position‐dependent enhancement of the quantum yield of fluorophores embedded in the fibers. Calculation of the ensemble‐averaged fluorescence enhancement unveils the possibility of strongly enhancing the overall emission intensity for structures with size twice the diameter of the embedded metal particles. These new, hybrid fluorescent systems with localized enhanced emission, and the general nanowire‐enhanced MEF effects associated to them, are highly relevant for developing nanoscale light‐emitting devices with high efficiency and intercoupled through nanofiber networks, highly sensitive optical sensors, and novel laser architectures.  相似文献   
760.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号