首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1064篇
  免费   63篇
  国内免费   5篇
电工技术   16篇
综合类   1篇
化学工业   312篇
金属工艺   9篇
机械仪表   6篇
建筑科学   61篇
能源动力   33篇
轻工业   85篇
水利工程   6篇
无线电   103篇
一般工业技术   212篇
冶金工业   17篇
原子能技术   5篇
自动化技术   266篇
  2024年   3篇
  2023年   23篇
  2022年   105篇
  2021年   97篇
  2020年   52篇
  2019年   45篇
  2018年   39篇
  2017年   43篇
  2016年   54篇
  2015年   45篇
  2014年   59篇
  2013年   88篇
  2012年   67篇
  2011年   88篇
  2010年   48篇
  2009年   55篇
  2008年   50篇
  2007年   36篇
  2006年   27篇
  2005年   30篇
  2004年   15篇
  2003年   19篇
  2002年   7篇
  2001年   4篇
  2000年   7篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   6篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1990年   1篇
  1973年   1篇
排序方式: 共有1132条查询结果,搜索用时 0 毫秒
991.
A commercially available silver paste was modified to match the flexographic process requirements. Rotational and oscillatory rheological tests were carried out to assess the printability and spreading behaviour of the resulting inks. Then, a multifactorial approach was used on a laboratory‐scale printing press to adapt the flexographic process for the front side metallisation of Cz‐Si solar cells, especially for the seed layer deposit of two layer contacts. To quickly identify the significant process parameters, a fractional design of experiment based on a screening approach at two levels was performed. Afterwards, two full factorial designs of experiments were implemented. While the first one allows a better understanding of the effect of the main factors and interactions, the second allows a fine tuning and a confirmation of the first results. Additionally, this methodology allows corroborating the influence of the ink rheological properties on the printing results. Following the process study and optimisation, a seed layer with an average width of 25 µm was printed at a high 0.3 m/s throughput. Additional results suggest that the line width and the throughput can be further improved, which underlines the potential of flexography for photovoltaic applications. Finally, the light‐induced process was used to thicken the seed layer after a standard firing‐through step, leading to an encouraging 17.9% efficiency on Cz‐Si solar cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
992.
Highly fluorinated materials are being widely investigated due to a number of peculiar properties, which are potentially useful for various applications, including use as lubricants, anti‐adhesive films, and substitutes for biological fluids for biomedical utilization. However, at present such potential is still poorly exploited. One of the major drawbacks that hampers the rapid development of nanoscale fluoro‐hybrid devices is the remarkable inertness of perfluoropolymeric materials that lack reactive functionalities, as they do not offer any functional groups that can be employed to covalently anchor organic molecules on their surface. In this paper, a convenient method for the stable biofunctionalization of strongly unreactive perfluoropolymer nanoparticles (PnPs) is reported. PnPs are easily coated with newly synthesized asymmetric diacetylenic monomer compounds (ADMs), thanks to PnP’s high propensity to interact with hydrophobic moieties. Once monomerically adsorbed onto PnPs, such suitably designed ADMs enable the formation of a robust polymeric shell around the perfluoroelastomer core via a clean UV‐promoted localized photopolymerization. Given the peculiar optical characteristics of PnPs, the coating of the particles can be monitored step by step using light scattering, which also allows estimation of the fraction of reacted monomers by competitive adsorption with smaller particles. The potential of this method for the biofunctionalization of PnPs is demonstrated with representative proteins and carbohydrates. Among them, the extension to avidin–biotin technology may broaden the scope and applicability of this strategy to potentially a large number of molecules of biomedical interest.  相似文献   
993.
994.
The effect of product characteristics and processing conditions on the initial rate of water absorption of 15 clay bricks was investigated and the influence of porosimetric parameters (amount, size and tortuosity of pores) as well as of phase composition (amount of calcium-silicates and amorphous phase) was established. The suction behaviour of bricks, which may be brought back to the models of [Gummerson RJ, Hall C, Hoff WD. The suction rate and the sorptivity of bricks. Brit Ceram Trans J 1981;80:150–2.] and [Hoffmann D, Niesel K. Quantifying capillary rise in columns of porous material. Am Ceram Soc Bull 1988;67(8):1418.], was also evaluated on the basis of both the product microstructure and the liquid physical properties. According to the model of Beltran et al. (1988), which reveled to be sufficiently reliable, the values of the capillary coefficient Ks were calculated and their correlation with the experimental ones has been provided. For a given liquid and in the same experimental conditions, the results indicate that varying in a controlled way the product microstructure (i.e. decreasing the pore size, increasing the pore tortuosity and/or controlling the amorphous/new formed phases ratio) should allow to design materials having a most suitable behaviour.  相似文献   
995.
996.
Organizational structure and responsibility   总被引:1,自引:0,他引:1  
Aim of the present paper is to provide a formal characterization of various different notions of responsibility within groups of agents (Who did that? Who gets the blame? Who is accountable for that? etc.). To pursue this aim, the papers proposes an organic analysis of organized collective agency by tackling the issues of organizational structure, role enactment, organizational activities, task-division and task-allocation. The result consists in a semantic framework based on dynamic logic in which all these concepts can be represented and in which various notions of responsibility find a formalization. The background motivation of the work consists in those responsibility-related issues which are of particular interest for the theory and development of multi-agent systems.  相似文献   
997.
Purpose. Nerve growth factor efficacy was demonstrated for corneal lesions treatment, and recombinant human NGF (rhNGF) was approved for neurotrophic keratitis therapy. However, NGF-induced molecular responses in cornea are still largely unknown. We analyzed microRNAs expression in human epithelial corneal cells after time-dependent rhNGF treatment. Methods. Nearly 700 microRNAs were analyzed by qRT-PCR. MicroRNAs showing significant expression differences were examined by DIANA-miRpath v.3.0 to identify target genes and pathways. Immunoblots were performed to preliminarily assess the strength of the in silico results. Results. Twenty-one microRNAs (miR-26a-1-3p, miR-30d-3p, miR-27b-5p, miR-146a-5p, miR-362-5p, mir-550a-5p, mir-34a-3p, mir-1227-3p, mir-27a-5p, mir-222-5p, mir-151a-5p, miR-449a, let7c-5p, miR-337-5p, mir-29b-3p, miR-200b-3p, miR-141-3p, miR-671-3p, miR-324-5p, mir-411-3p, and mir-425-3p) were significantly regulated in response to rhNGF. In silico analysis evidenced interesting target genes and pathways, including that of neurotrophin, when analyzed in depth. Almost 80 unique target genes (e.g., PI3K, AKT, MAPK, KRAS, BRAF, RhoA, Cdc42, Rac1, Bax, Bcl2, FasL) were identified as being among those most involved in neurotrophin signaling and in controlling cell proliferation, growth, and apoptosis. AKT and RhoA immunoblots demonstrated congruence with microRNA expression, providing preliminary validation of in silico data. Conclusions. MicroRNA levels in response to rhNGF were for the first time analyzed in corneal cells. Novel insights about microRNAs, target genes, pathways modulation, and possible biological responses were provided. Importantly, given the putative role of microRNAs as biomarkers or therapeutic targets, our results make available data which might be potentially exploitable for clinical applications.  相似文献   
998.
A major paradigm in nephrology states that the loss of filtration function over a long time is driven by a persistent hyperfiltration state of surviving nephrons. This hyperfiltration may derive from circulating immunological factors. However, some clue about the hemodynamic effects of these factors derives from the effects of so-called nephroprotective drugs. Thirty years after the introduction of Renin-Angiotensin-system inhibitors (RASi) into clinical practice, two new families of nephroprotective drugs have been identified: the sodium-glucose cotransporter 2 inhibitors (SGLT2i) and the vasopressin receptor antagonists (VRA). Even though the molecular targets of the three-drug classes are very different, they share the reduction in the glomerular filtration rate (GFR) at the beginning of the therapy, which is usually considered an adverse effect. Therefore, we hypothesize that acute GFR decline is a prerequisite to obtaining nephroprotection with all these drugs. In this study, we reanalyze evidence that RASi, SGLT2i, and VRA reduce the eGFR at the onset of therapy. Afterward, we evaluate whether the extent of eGFR reduction correlates with their long-term efficacy. The results suggest that the extent of initial eGFR decline predicts the nephroprotective efficacy in the long run. Therefore, we propose that RASi, SGLT2i, and VRA delay kidney disease progression by controlling maladaptive glomerular hyperfiltration resulting from circulating immunological factors. Further studies are needed to verify their combined effects.  相似文献   
999.
Prolamins constitute a unique class of seed storage proteins, present only in grasses. In the lumen of the endoplasmic reticulum (ER), prolamins form large, insoluble heteropolymers termed protein bodies (PB). In transgenic Arabidopsis (Arabidopsis thaliana) leaves, the major maize (Zea mays) prolamin, 27 kDa γ-zein (27γz), assembles into insoluble disulfide-linked polymers, as in maize endosperm, forming homotypic PB. The 16 kDa γ-zein (16γz), evolved from 27γz, instead forms disulfide-bonded dispersed electron-dense threads that enlarge the ER lumen without assembling into PB. We have investigated whether the peculiar features of 16γz are also maintained during transgenic seed development. We show that 16γz progressively changes its electron microscopy appearance during transgenic Arabidopsis embryo maturation, from dispersed threads to PB-like, compact structures. In mature seeds, 16γz and 27γz PBs appear very similar. However, when mature embryos are treated with a reducing agent, 27γz is fully solubilized, as expected, whereas 16γz remains largely insoluble also in reducing conditions and drives insolubilization of the ER chaperone BiP. These results indicate that 16γz expressed in the absence of the other zein partners forms aggregates in a storage tissue, strongly supporting the view that 16γz behaves as the unassembled subunit of a large heteropolymer, the PB, and could have evolved successfully only following the emergence of the much more structurally self-sufficient 27γz.  相似文献   
1000.
Neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease are clinically diagnosed using neuropsychological and cognitive tests, expensive neuroimaging-based approaches (MRI and PET) and invasive and time-consuming lumbar puncture for cerebrospinal fluid (CSF) sample collection to detect biomarkers. Thus, a rapid, simple and cost-effective approach to more easily access fluids and tissues is in great need. Here, we exploit the chemical direct reprogramming of patient skin fibroblasts into neurons (chemically induced neurons, ciNs) as a novel strategy for the rapid detection of different pathological markers of neurodegenerative diseases. We found that FAD fibroblasts have a reduced efficiency of reprogramming, and converted ciNs show a less complex neuronal network. In addition, ciNs from patients show misfolded protein accumulation and mitochondria ultrastructural abnormalities, biomarkers commonly associated with neurodegeneration. Moreover, for the first time, we show that microfluidic technology, in combination with chemical reprogramming, enables on-chip examination of disease pathological processes and may have important applications in diagnosis. In conclusion, ciNs on microfluidic devices represent a small-scale, non-invasive and cost-effective high-throughput tool for protein misfolding disease diagnosis and may be useful for new biomarker discovery, disease mechanism studies and design of personalised therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号