Use of the finite element method for calculating stress intensity factors of two-dimensional cracked bodies has become commonplace. In this study, the more difficult task of applying finite elements to three-dimensional cracked bodies is investigated. Since linear elastic material is considered, square root singular stresses exist along the edge of an embedded crack. To deal with this numerical difficulty, twenty noded, isoparametric, serendipity, quarter-point, singular, solid elements are employed. Examination of these elements is carried out in order to determine the extent of the singular behavior.In addition, the stiffness derivative technique is explored, together with quarter-point elements, to determine an accurate procedure for computing stress intensity factors in three-dimensions. The problem of chosing a proper virtual crack extension is addressed. To this end, the disturbance in the square root singular stresses is examined and compared with a similar disturbance which occurs in two-dimensions. As a numerical example, a pennyshaped crack in a finite height cylinder is considered with various meshes. It is found that stress intensity factors can be calculated to an accuracy within 1 percent when quarter-point cylindrical elements are employed with the stiffness derivative technique such that the crack extension is one in which one corner node is not moved, the other corner node is moved a small distance, and the midside node is moved one-half that distance. This crack extension is analogous to that of a straight crack advance for a brick element. Both of these crack advances disturb the square root singular stresses in a manner similar to that which occurs with the two-dimensional eight noded element in which the crack has been advanced a small distance. 相似文献
Homo sapiens are unique in having a life history phase of childhood, which follows infancy, as defined by breastfeeding. This review uses evolutionary life history theory in understanding child growth in a broad evolutionary perspective, using the data and theory of evolutionary predictive adaptive growth-related strategies for transition from infancy to childhood. We have previously shown that a delayed infancy–childhood transition has a lifelong impact on stature. Feeding practices during infancy are fundamental elements of nutrition as they program for future growth and body composition. A relationship between the duration of breastfeeding and the nature of weaning has been suggested as a possible cause for later obesity and growth patterns. This review highlights the role that breast milk feeding and variations in the weaning age have on transition to childhood, growth, and body composition. 相似文献
Geosynthetic reinforced soil integrated bridge system (GRS-IBS) design guidelines recommend the use of a reinforced soil foundation (RSF) to support the dead loads that are applied by the reinforced soil abutment and bridge superstructure, as well as any live loads that are applied by traffic on the bridge or abutment. The RSF is composed of high-quality granular fill material that is compacted and encapsulated within a geotextile fabric. Current GRS-IBS interim implementation design guidelines recommend the use of design methodologies for bearing capacity that are based around rigid foundation behavior, which yield a trapezoidal applied pressure distribution that is converted to a uniform applied pressure that acts over a reduced footing width for purposes of analysis. Recommended methods for determining the applied pressure distribution beneath the RSF for settlement analyses follow conventional methodologies for assessing the settlement of spread footings, which typically assume uniformly applied pressures beneath the base of the foundation that are distributed to the underlying soil layers in a fashion that can reasonably be modeled with an elastic-theory approach. Field data collected from an instrumented GRS-IBS that was constructed over a fine-grained soil foundation indicates that the RSF actually behaves in a fairly flexible way under load, yielding an applied pressure distribution that is not uniform or trapezoidal, and which is significantly different than what conventional GRS-IBS design methodologies assume. This paper consequently presents an empirical approach to determining the applied pressure distribution beneath the RSF in GRS-IBS construction. This empirical approach is a useful first step for researchers, as it draws important attention to this issue, and provides a framework for collecting meaningful field data on future projects which accurately capture real GRS-IBS foundation behavior. 相似文献
Conventional design of geosynthetic-reinforced soil structures is divided into two categories, walls and slopes, based on the batter of its facing system. Internal stability, characterized as sufficient reinforcement anchoring and strength, is performed using earth pressure-based design criteria for reinforced walls while reinforced slopes are founded on limit equilibrium (LE) slope stability analyses. LE analyses are also used to assess the global or compound stability of both types of structures, accounting for the geometry of the reinforced, retained and foundation soils. The application of LE-based methods typically results in determination of a slip surface corresponding to the lowest attained Safety Factor (SF), known as the Factor of Safety (Fs); however, it yields little information about reinforcement loading or connection load. In this study, use of the analyzed spatial distribution of SF known as a Safety Map, is modified to attain a prescribed constant Fs at any location in the reinforced soil mass. This modified framework, implemented through an iterative, top-down procedure of LE slope stability analyses originating from the crest of a reinforced structure and exiting at progressively lower elevations on the facing, enables the determination of a Tension Map that illustrates the required distribution of reinforcement tension to attain a prescribed limit state of equilibrium. This tension map is directly constrained by a pullout capacity envelope at both the rear and front of each reinforcement layer, providing a unified, LE-based approach towards assessing an optimal selection of mutually dependent strength and layout of the reinforcement. To illustrate the utility of the Limit State framework, a series of instructive examples are presented. The results demonstrate the effects of facing elements, closely-spaced reinforcements, secondary reinforcement layers, and is compared to conventional design approaches. 相似文献
The chemical diffusion coefficient for a p-type oxide either pure or doped with an aliovalent impurity as evaluated from electrical conductivity changes in simulated relaxation experiments is compared with the corresponding theoretical values obtained on the basis of Fick's first law using a convenient model to represent the defect structure of the oxide. It is found that if the relaxation process is purely diffusion controlled, the experimental value of
obtained (
) is in rather good agreement with the theoretical value calculated by considering the diffusion of lattice defects
rather than with that obtained by considering the diffusion of the prevailing electronic defects
, even when the latter two values differ. This is shown to be the result of relatively small departures from a proportionality (for the pure oxide) or from a linear dependence (for a doped oxide) in the relationship between the deviation from stoichiometry and the concentration of the electron holes in restricted range of oxygen activity as used in relaxation experiments. 相似文献
The complex coseismic process of the Aso-Bridge landslide during the main shock of the 2016 Kumamoto Earthquake was investigated. Finite element analysis and discrete element analysis considering vertical seismic accelerations (VSA) were conducted to explore the salient features of the prefailure mechanism and postfailure kinematic process of the coseismic landslide associated with the initiation time and kinematic runout behavior, respectively. Two seismic input conditions, one involving only horizontal seismic accelerations (HSA), and the other accounting for both HSA and VSA, were used to assess the influence of VSA from the prefailure to postfailure regimes. First, satisfactory agreement between the study and the published results in terms of landslide initiation time was obtained. As revealed by the rapid change of source displacement (RCSD), VSA did not alter landslide initiation time; however, it significantly increased the RCSD approximately 2-fold, which provided a clear initiation time. At landslide initiation, the estimated average velocities in a vertical direction increased approximately 16-fold (from −0.011 to −0.174 m/s) by accounting for VSA. Second, the results suggested that VSA had a trivial influence on runout behavior in the postfailure regime, given that such behavior was dominated by the collision and free fall during the sliding as well as the terrain features. With an average velocity of 21.34 m/s, the sliding source ultimately reached the riverbank within 21 s. The paper demonstrates that a combination of FEA and DEA can be used to investigate the coseismic process of the Aso-Bridge landslide and lead to satisfactory agreement with the event. Our comprehensive analysis provides insight into the role of VSA in earthquake-induced landslides.
A new device was developed to comprehensively assess the interaction between soil and reinforcement as well as the interaction between neighboring reinforcement layers in a reinforced soil mass, under both working and ultimate interface shear stress conditions. An understanding of these two interactions is required to assess the mechanical behavior of a geosynthetic-reinforced soil mass considering varying vertical reinforcement spacings. Specifically, the new device allows direct visualization of the kinematic response of soil particles adjacent to the geosynthetic reinforcement layers, which facilitates evaluation of the soil displacement field via digital image analysis. Evaluation of the soil displacement field allows quantification of the extent of the shear influence zone around a tensioned reinforcement layer. Ultimately, the device facilitates investigating the load transfer mechanisms that occur not only at the soil-reinforcement interface, but also at distances farther from the interface, thereby providing additional insight into the effect of vertical reinforcement spacing on a reinforced soil mass. Finally, the device allows monitoring of dilatancy within the reinforced soil mass upon shear stress generation at the interface between soil and reinforcement. Overall, the device was found to provide the measurements needed to adequately predict the strains developing both in reinforcement layers tensioned by direct application of external loads as well as in reinforcement layers tensioned by the shear transfer induced by adjacent geosynthetic reinforcements. Ultimately, the proposed experimentation technique allows generation of data required to evaluate the load transfer mechanisms amongst soil and reinforcement layers in reinforced soil structures. The strain magnitude in the neighboring reinforcements was found to exceed a magnitude of 10% of the strain magnitude obtained in the active reinforcement. The zone of shear stress transfer from the soil-reinforcement interface was found to exceed 0.2 m on each side of the active reinforcement. 相似文献
We propose Monte Carlo simulation of the etching process in two dimensions for the manufacture of microchannels and microcavities on a solid substrate. The method combines the effect of two different regimes based on diffusion-limited disaggregation and reaction-limited erosion, respectively. Besides, the role of the selectivity in site extraction is taken into account to foresee the effects of the temperature of the eroding bath. This technique proves to be a valid alternative to more complex analytical methods to describe surface decay processes in the presence of overhangs. The relevant geometries of the etched surfaces are analyzed, and other statistical properties of the cavities are discussed and compared to the ones predicted by continuum models. 相似文献
We argue that learning equilibrium is an appropriate generalization to multi-agent systems of the concept of learning to optimize in single-agent setting. We further define and discuss the concept of weak learning equilibrium. 相似文献