首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18538篇
  免费   2300篇
  国内免费   10篇
电工技术   1397篇
综合类   410篇
化学工业   8858篇
金属工艺   303篇
机械仪表   407篇
建筑科学   791篇
矿业工程   169篇
能源动力   140篇
轻工业   1757篇
水利工程   122篇
石油天然气   68篇
无线电   515篇
一般工业技术   3219篇
冶金工业   243篇
原子能技术   33篇
自动化技术   2416篇
  2023年   660篇
  2022年   366篇
  2021年   747篇
  2020年   737篇
  2019年   633篇
  2018年   619篇
  2017年   441篇
  2016年   690篇
  2015年   858篇
  2014年   904篇
  2013年   1495篇
  2012年   654篇
  2011年   545篇
  2010年   881篇
  2009年   988篇
  2008年   491篇
  2007年   456篇
  2006年   338篇
  2005年   308篇
  2004年   241篇
  2003年   214篇
  2001年   129篇
  1998年   200篇
  1997年   147篇
  1996年   203篇
  1995年   190篇
  1994年   164篇
  1993年   223篇
  1992年   152篇
  1990年   151篇
  1989年   174篇
  1988年   137篇
  1987年   162篇
  1986年   187篇
  1985年   166篇
  1984年   167篇
  1983年   177篇
  1982年   156篇
  1981年   206篇
  1980年   168篇
  1979年   171篇
  1977年   149篇
  1976年   155篇
  1975年   206篇
  1974年   189篇
  1973年   366篇
  1972年   212篇
  1971年   150篇
  1970年   144篇
  1968年   154篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Macrocycles constitute an attractive structural class of molecules for targeting biomolecular interfaces with high affinity and specificity. Here, we report systematic studies aimed at exploring the scope and mechanism of a novel chemo‐biosynthetic strategy for generating macrocyclic organo‐peptide hybrids (MOrPHs) through a dual oxime‐/intein‐mediated ligation reaction between a recombinant precursor protein and bifunctional, oxyamino/1,3‐amino‐thiol compounds. An efficient synthetic route was developed to access structurally different synthetic precursors incorporating a 2‐amino‐ mercaptomethyl‐aryl (AMA) moiety previously found to be important for macrocyclization. With these compounds, the impact of the synthetic precursor scaffold and of designed mutations within the genetically encoded precursor peptide sequence on macrocyclization efficiency was investigated. Importantly, the desired MOrPHs were obtained as the only product from all the different synthetic precursors probed in this study and across peptide sequences comprising four to 15 amino acids. Systematic mutagenesis of the “i?1” site at the junction between the target peptide sequence and the intein moiety revealed that the majority of the 20 amino acids are compatible with MOrPH formation; this enables the identification of the most and the least favorable residues for this critical position. Furthermore, interesting trends with respect to the positional effect of conformationally constrained (Pro) and flexible (Gly) residues on the reactivity of randomized hexamer peptide sequences were observed. Finally, mechanistic investigations enabled the relative contributions of the two distinct pathways (side‐chain→C‐end ligation versus C‐end→side‐chain ligation) to the macrocyclization process to be dissected. Altogether, these studies demonstrate the versatility and robustness of the methodology to enable the synthesis and diversification of a new class of organo‐peptide macrocycles and provide valuable structure–reactivity insights to inform the construction of macrocycle libraries through this chemo‐biosynthetic strategy.  相似文献   
962.
FSN1, a gene isolated from the sugar‐cane pathogen Fusarium sacchari, encodes a 4707‐residue nonribosomal peptide synthetase consisting of three complete adenylation, thiolation and condensation modules followed by two additional thiolation and condensation domain repeats. This structure is similar to that of ferricrocin synthetase, which makes a siderophore that is involved in intracellular iron storage in other filamentous fungi. Heterologous expression of FSN1 in Aspergillus oryzae resulted in the accumulation of a secreted metabolite that was identified as ferrirhodin. This siderophore was found to be present in both mycelium and culture filtrates of F. sacchari, whereas ferricrocin is found only in the mycelium, thus suggesting that ferricrocin is an intracellular storage siderophore in F. sacchari, whereas ferrirhodin is used for iron acquisition. To our knowledge, this is the first report to characterise a ferrirhodin synthetase gene functionally.  相似文献   
963.
Bioactive peptides often contain several disulfide bonds that provide the main contribution to conformational rigidity and structural, thermal, or biological stability. Among them, cystine‐knot peptides—commonly named “knottins”—make up a subclass with several thousand natural members. Hence, they are considered promising frameworks for peptide‐based pharmaceuticals. Although cystine‐knot peptides are available through chemical and recombinant synthetic routes, oxidative folding to afford the bioactive isomers still remains a crucial step. We therefore investigated the oxidative folding of ten protease‐inhibiting peptides from two knottin families, as well as that of an HIV entry inhibitor and of aprotinin, under two conventional sets of folding conditions and by a newly developed procedure. Kinetic studies identified folding conditions that resulted in correctly folded miniproteins with high rates of conversion even for highly hydrophobic and aggregation‐prone peptides in concentrated solutions.  相似文献   
964.
Mounting evidence supports the presence of biologically relevant G‐quadruplexes in single‐cell organisms, but the existence of endogenous G‐quadruplex structures in mammalian cells remains highly controversial. This is due, in part, to the common misconception that DNA and RNA molecules are passive information carriers with relatively little structural or functional complexity. For those working in the field, however, the lack of available tools for characterizing DNA structures in vivo remains a major limitation to addressing fundamental questions about structure–function relationships of nucleic acids. In this review, we present progress towards the direct detection of G‐quadruplex structures by using small molecules and modified oligonucleotides as fluorescent probes. While most development has focused on cell‐permeable probes that selectively bind to G‐quadruplex structures with high affinity, these same probes can induce G‐quadruplex folding, thereby making the native conformation of the DNA or RNA molecule (i.e., in the absence of probe) uncertain. For this reason, modified oligonucleotides and fluorescent base analogues that serve as “internal” fluorescent probes are presented as an orthogonal means for detecting conformational changes, without necessarily perturbing the equilibria between G‐quadruplex, single‐stranded, and duplex DNA. The major challenges and motivation for the development of fluorescent probes for G‐quadruplex structures are presented, along with a summary of the key photophysical, biophysical, and biological properties of reported examples.  相似文献   
965.
Two chemically synthesized flavin derivatives, 8‐trifluoromethyl‐ and 8‐bromoriboflavin (8‐CF3RF and 8‐BrRF), were photochemically characterized in H2O and studied spectroscopically after incorporation into the LOV domain of the blue light photoreceptor YtvA from Bacillus subtilis. The spectroscopic studies were paralleled by high‐level quantum chemical calculations. In solution, 8‐BrRF showed a remarkably high triplet quantum yield (0.97, parent compound riboflavin, RF: 0.6) and a small fluorescence quantum yield (0.07, RF: 0.27). For 8‐CF3RF, the triplet yield was 0.12, and the fluorescence quantum yield was 0.7. The high triplet yield of 8‐BrRF is due to the bromine heavy atom effect causing a stronger spin–orbit coupling. Theoretical calculations reveal that the decreased triplet yield of 8‐CF3RF is due to a smaller charge transfer and a less favorable energetic position of T2, required for intersystem crossing from S1 to T1, as an effect of the electron‐withdrawing CF3 group. The reconstitution of the LOV domain with the new flavins resulted in the typical LOV photochemistry, consisting of triplet state formation and covalent binding of the chromophore, followed by a thermal recovery of the parent state, albeit with different kinetics and photophysical properties.  相似文献   
966.
Protein kinases are essential enzymes for cellular signaling, and are often regulated by participation in protein complexes. The mitogen‐activated protein kinase (MAPK) p38 is involved in multiple pathways, and its regulation depends on its interactions with other signaling proteins. However, the identification of p38‐interacting proteins is challenging. For this reason, we have developed label transfer reagents (LTRs) that allow labeling of p38 signaling complexes. These LTRs leverage the potency and selectivity of known p38 inhibitors to place a photo‐crosslinker and tag in the vicinity of p38 and its binding partners. Upon UV irradiation, proteins that are in close proximity to p38 are covalently crosslinked, and labeled proteins are detected and/or purified with an orthogonal chemical handle. Here we demonstrate that p38‐selective LTRs selectively label a diversity of p38 binding partners, including substrates, activators, and inactivators. Furthermore, these LTRs can be used in immunoprecipitations to provide low‐resolution structural information on p38‐containing complexes.  相似文献   
967.
GluN2B‐containing NMDA receptors are involved in many important physiological functions and play a pivotal role in mediating pain as well as in several neurodegenerative disorders. We aimed to develop fluorescent probes to target the GluN2B subunit selectively in order to allow better understanding of the relationships between receptor localisation and physiological importance. Ifenprodil, known as the GluNR2B antagonist of reference, was chosen as the template for the elaboration of probes. We had previously reported a fluorescein conjugate that was shown (by confocal microscopy imaging of DS‐red‐labelled cortical neurons) to bind specifically to GluN2B. To elaborate this probe, we explored the influence of both the nature and the attachment point of the spacer between the fluorophore and the parent compound, ifenprodil. We performed chemical modifications of ifenprodil at the benzylic position and on the phenol ring by introducing secondary amine or amide functions and evaluated alkyl chains from two to 20 bonds either including or not including secondary amide functions as spacers. The previously developed probe was found to display the greatest activity in the inhibition of NMDA‐induced Ca2+ influx by calcium imaging experiments on HEK293 cells transfected with the cDNA encoding for GluN1‐1A and GluN2B. Further investigations revealed that this probe had a neuroprotective effect equivalent to that of ifenprodil in a standard test for neurotoxicity. Despite effects of lesser amplitude with these probes relative to ifenprodil, we demonstrated that they displaced [3H]ifenprodil in mouse brain slices in a similar manner.  相似文献   
968.
969.
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号