Composite La0.8Sr0.2MnO3 (LSM)-Y2O3-stabilized ZrO2 (YSZ) cathodes with compositions ranging from 30:70 to 70:30 wt.% LSM:YSZ were studied both electrochemically and microstructurally. Polarization resistance was lowest for the 50 wt.% YSZ composition, and increased symmetrically as the composition deviated from this value. Serial-sectioning using focused ion beam-scanning electron microscopy was implemented to reconstruct the three-dimensional cathode microstructure. Various averaged structural parameters were determined versus composition, including phase volume fractions, surface area densities, total triple-phase boundary (TPB) densities, interfacial curvatures, phase tortuosities, and the levels of phase connectivity. Typically >90% of the pore and YSZ networks were found to be intra-connected to the surrounding phase, but the LSM networks showed lower connected fractions, as low as 37.5% for a LSM weight fraction of 30%. The composition dependences of the total TPB density and electrochemically-active TPB density (i.e., TPB's on three fully intra-connected phases) were shown to agree reasonably well with simple “sphere-packing” structural models. An electrochemical model that accounted for the linear-specific resistance of TPB's, phase intra-connectivity, and oxygen ion transport in the YSZ as influenced by its tortuosity, was found to provide reasonable agreement with the measured polarization resistance versus composition. 相似文献
In this study, new and efficient sorbent with density 0.2 g/cm3 was fabricated by incorporating rice straw into polyurethane matrix to get an open cell structure material with high oil uptake capacity. The influences of various important factors such as amount of adding rice straw, size of rice straw particles, and adsorption time on oil adsorption capacity of new sorbent material were investigated. The results showed that the oil absorption rate occurred fast in first 15–30 min, then slowed down and reached saturation level after about 2 h of treatment. Oil adsorption capacity of the new sorbent material was relatively high, up to 12.0 g/g. In comparison with pristine polyurethane or lignocellulosic materials, the new sorbents had higher oil adsorption capacity. Some characteristics of the as-obtained sorbent, such as surface shapes and porosity, were also studied by SEM analysis. 相似文献
The endometrium is hostile to embryo implantation except during the 'window of receptivity'. A change in endometrial gene expression is required for the development of receptivity. Calbindin-d9k (CaBP-d9k) and calbindin-d28k (CaBP-d28k) are proteins possessing EF-hand motifs which have high affinity for Ca2+ ions. Previously, it has been demonstrated that, in mouse endometrium, the expression of both calbindins is highly regulated during implantation and that both proteins play critical but functionally redundant roles at implantation. This study was the first to determine the expression of these two calbindins in the human and rhesus monkey endometrium. Initial RT-PCR analysis demonstrated that CaBP-d28k but not CaBP-d9k mRNA expression is detectable in the endometrium of both species. Western blot analysis confirmed the presence of immuno-reactive CaBP-d28k protein in the primate endometrium. Furthermore, the endometrial expression pattern of CaBP-d28k mRNA and protein was examined by Northern blot analysis and immunohistochemistry respectively in both species across the menstrual cycle and during early pregnancy. Semi-quantitative statistical analysis of the immunohistochemistry results revealed that, in the human, CaBP-d28k protein expression was maximal in luminal and glandular epithelium during the mid-secretory phase, coinciding with the time when the endometrium is receptive to embryo implantation. Expression in rhesus monkey showed a similar trend. These results suggest that, in the primate endometrium, only CaBP-d28k is expressed and that the specific regulation of this calbindin is potentially important for the establishment of uterine receptivity. 相似文献
In the present study, a biomimetic nanoconstruct (BNc) with a multimodal imaging system is engineered using tumor homing natural killer cell membrane (NKM), near‐infrared (NIR) fluorescent dye, and gadolinium (Gd) conjugate‐based magnetic resonance imaging contrast agent onto the surface of a polymeric nanoparticle. The engineered BNc is 110 ± 20 nm in size and showed successful retention of NKM proteins. The magnetic properties of the BNc are found to be tunable from 2.1 ± 0.17 to 5.3 ± 0.5 mm ?1 s?1 under 14.1 T, by adjusting the concentration of Gd‐lipid conjugate onto the surface of the BNc. Confocal imaging and cell sorting analysis reveal a distinguishable cellular interaction of the BNc with MCF‐7 cells in comparison to that of bare polymeric nanoparticles suggesting the tumor homing properties of NKM camouflage system. The in vitro cellular interaction results are further confirmed by in vivo NIR fluorescent tumor imaging and ex vivo MR imaging, respectively. Pharmacokinetics and biodistribution analysis of the BNc show longer circulation half‐life (≈9.5 h) and higher tumor accumulation (10% of injected dose) in MCF‐7 induced tumor‐bearing immunodeficient NU/NU nude mice. Owing to the proven immunosurveillance potential of NK‐cell in the field of immunotherapy, the BNc engineered herein would hold promises in the design consideration of nanomedicine engineering. 相似文献
This paper presents a design of a comb finger shape and calculation of a trapezoidal-shaped electrostatic comb-drive actuator (TECA) in order to aim a higher electrostatic force density and larger displacement in comparison with the typical rectangular-shaped electrostatic comb-drive actuator (RECA). Relation between a beam’s stiffness and a driving voltage has been examined to predict a pull-in effect occurring in TECA. Micro fabrication and characterization of TECA and RECA systems are performed by using a standard SOI-MEMS technology. Theoretical and experimental results confirm the strong points of TECA’s structure (similar to the dimensions of RECA) such as a larger number of movable comb finger arrayed at the same length and larger displacement. At driving voltages of 47.9 and 50 (V), the calculation and measurement displacement of TECA are approximately 2.2 and 1.78 times larger than that of RECA, respectively.
In this paper, we introduce two modifications of the forward–backward splitting method with a new step size rule for inclusion problems in real Hilbert spaces. The modifications are based on Mann and viscosity-ideas. Under standard assumptions, such as Lipschitz continuity and monotonicity (also maximal monotonicity), we establish strong convergence of the proposed algorithms. We present two numerical examples, the first in infinite dimensional spaces, which illustrates mainly the strong convergence property of the algorithm. For the second example, we illustrate the performances of our scheme, compared with the classical forward–backward splitting method for the problem of recovering a sparse noisy signal. Our result extend some related works in the literature and the primary experiments might also suggest their potential applicability. 相似文献
Obesity is a serious epidemic health problem that can cause many other diseases including type 2 diabetes and cardiovascular diseases. Current approaches to combat obesity suffer from low effectiveness and adverse side effects. Here, a new self‐administrable and minimally invasive transdermal drug delivery strategy for home‐based long‐term treatment of obesity and other diseases is developed. Specifically, ultrathin, core‐shelled, and lance‐shaped polymeric drug reservoirs (micro‐lances [MLs]) are readily fabricated by a thermal pressing molding method and totally implanted into subcutaneous fat by lancing through the skin. Using a diet‐induced obese mouse model, it is shown that the development of obesity and associated metabolic disorders is effectively inhibited by applying therapeutic core‐shelled MLs once every 2 weeks. The outstanding therapeutic effects are attributable to highly localized and biphasic drug release, as well as combination therapy based on browning transformation of white fat and enhanced insulin sensitivity. 相似文献