首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2807篇
  免费   30篇
  国内免费   2篇
电工技术   36篇
综合类   2篇
化学工业   648篇
金属工艺   44篇
机械仪表   45篇
建筑科学   96篇
矿业工程   9篇
能源动力   77篇
轻工业   435篇
水利工程   17篇
石油天然气   4篇
无线电   170篇
一般工业技术   406篇
冶金工业   342篇
原子能技术   16篇
自动化技术   492篇
  2024年   30篇
  2023年   29篇
  2022年   59篇
  2021年   78篇
  2020年   64篇
  2019年   93篇
  2018年   99篇
  2017年   86篇
  2016年   90篇
  2015年   70篇
  2014年   119篇
  2013年   178篇
  2012年   173篇
  2011年   170篇
  2010年   145篇
  2009年   143篇
  2008年   139篇
  2007年   134篇
  2006年   92篇
  2005年   73篇
  2004年   60篇
  2003年   60篇
  2002年   65篇
  2001年   37篇
  2000年   51篇
  1999年   34篇
  1998年   103篇
  1997年   67篇
  1996年   34篇
  1995年   36篇
  1994年   34篇
  1993年   31篇
  1992年   22篇
  1991年   19篇
  1990年   11篇
  1989年   12篇
  1988年   7篇
  1987年   9篇
  1986年   8篇
  1985年   5篇
  1984年   7篇
  1983年   7篇
  1982年   4篇
  1981年   8篇
  1980年   7篇
  1979年   5篇
  1978年   3篇
  1977年   7篇
  1976年   12篇
  1968年   3篇
排序方式: 共有2839条查询结果,搜索用时 15 毫秒
61.
    
Pure Cu was processed by ECAP at five different temperatures from room temperature (RT) to 523 K. The influence of pressing temperature on microstructure evolution and tensile behavior was investigated in detail. The results show that as the ECAP temperature is increased the grain size and ductility both increase whereas the dislocation density and yield strength decrease. In the case of ECAP processing in the range of RT to 473 K the mechanism governing microstructural refinement is continuous dynamic recrystallization (CDRX), whereas at 523 K the mechanism changes to discontinuous dynamic recrystallization (DDRX). At higher ECAP temperatures, the kinetics of CDRX are retarded leading to a lower fraction of equiaxed grains/high‐angle grain boundaries and a higher fraction of dislocation cell structures. At 523 K, DDRX induces a high fraction of equiaxed grains with a very low dislocation density which appears responsible for the observed high tensile ductility. The sample processed at 523 K possessed a good combination of strength and ductility, suggesting that processing by ECAP at elevated temperatures may be a suitable alternative to RT ECAP processing followed by subsequent annealing.  相似文献   
62.
A series of polymeric salts of p-substituted benzoic acids in poly(methylmethacrylate-co-N,N-dimethylaminopropylacrylamide) were prepared and AC impedance studies of film-attached electrodes were carried out. The impedance curves and conductivity variation with temperature were analysed. The parameter which describes the shape of the circular arcs in the impedance curves was temperature independent, and the distribution of relaxation times remained constant during the test on the material. Furthermore, the ionic conductivity was highly dependent on the chemical structure produced by the substituted benzoic group.  相似文献   
63.
The first two tables in Reference 1 are incorrect. Corrected tables are provided below. The errors do not affect the conclusions or the discussion in that paper.  相似文献   
64.
A study has been made of the dependences of the electrical resistivity and the Hall coefficient on the temperature in the range 1.8-1300 K and on magnetic fields of up to 28 kOe for the biomorphic SiC/Si (MDF-SiC/Si) composite and biomorphic porous SiC (MDF-SiC) based upon artificial cellulosic precursor (MDF - medium density fiberboards). It has been shown that electric transport in MDF-SiC is effected by carriers of n-type with a high concentration of ∼1020 cm−3 and a low mobility of ∼0.4 cm2 V−1 s−1. The specific features in the conductivity of MDF-SiC are explained by quantum effects arising in disordered systems and requiring quantum corrections to conductivity. The TEM studies confirmed the presence of disordering structural features (nanocrystalline regions) in MDF-SiC. The conductivity of MDF-SiC/Si composite originates primarily from Si component in the temperature range 1.8-500 K and since ∼500 to 600 K the contribution of MDF-SiC matrix becomes dominant.  相似文献   
65.
A catalyst of Ni supported on alumina coated monolith has been prepared, characterized and tested in NH3 decomposition. The characterization of the catalyst by XPS and TPR showed that there is no formation of aluminates after catalyst use. It is studied the effect of the space velocity, by varying the feed flow rate and the catalyst??s length. Some evidences are shown about the reaction inhibition by produced H2 and about the reasons for the better performance of the monolith than packed bed catalyst.  相似文献   
66.

Abstract  

A mesoporous-type catalytic support was synthesized through the modification of a smectite with polyvinyl alcohol (PVA) and microwaves. Texture and micro-morphology of the support was determined. Several techniques were employed in order to describe the chemical environment of active species on the surface. Ni0 particle sizes were dependent on the structural site of reducible species. High stable Ni-Ce catalysts (calcined at 800 °C) were evaluated in the CO2 reforming of methane reaction at 700 °C (WHSV = 96 L g−1 h−1, without dilution gas and pre-reduction). The catalysts have presented CH4 conversions between 40 and 65%, CO2 conversion between 35 and 65% and H2/CO ratios between 0.2 and 0.4.  相似文献   
67.
Five commercially available multi-walled carbon nanotubes (MWNTs), with different characteristics, were melt mixed with polycarbonate (PC) in a twin-screw micro compounder to obtain nanocomposites containing 0.25-3.0 wt.% MWNT. The electrical properties of the composites were assessed using bulk electrical conductivity measurements, the mechanical properties of the composites were evaluated using tensile tests and dynamic mechanical analysis (DMA), and the thermal properties of the composites were investigated using differential scanning calorimetry (DSC). Electrical percolation thresholds (pcs) were observed between 0.28 wt.% and 0.60 wt.%, which are comparable with other well-dispersed melt mixed materials. Based on measurements of diameter and length distributions of unprocessed tubes it was found that nanotubes with high aspect ratios exhibited lower pcs, although one sample did show higher pc than expected (based on aspect ratio) which was attributed to poorer dispersion achieved during mixing. The stress-strain behavior of the composites is only slightly altered with CNT addition; however, the strain at break is decreased even at low loadings. DMA tests suggest the formation of a combined polymer-CNT continuous network evidenced by measurable storage moduli at temperatures above the glass transition temperature (Tg), consistent with a mild reinforcement effect. The composites showed lower glass transition temperatures than that of pure PC. Lowering of the height of the tanδ peak from DMA and reductions in the heat capacity change at the glass transition from DSC indicate that MWNTs reduced the amount of polymer material that participates in the glass transition of the composites, consistent with immobilization of polymer at the nanotube interface.  相似文献   
68.
Polymer Bulletin - Preparation of associating multiblock copolymer electrolytes mediated by radical addition–fragmentation chain transfer (RAFT) technique has been evaluated and reported in...  相似文献   
69.
Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.  相似文献   
70.
The demand for specific fuels and chemical feed-stocks fluctuates, and as a result, logistical mismatches can occur in the supply of their precursor raw materials such as coal, biomass, crude oil, and methane. To overcome these challenges, industry requires a versatile and robust suite of conversion technologies, many of which are mediated by synthesis gas (CO + H(2)) or methanol/dimethyl ether (DME) intermediates. One such transformation, the conversion of methanol/DME to triptane (2,2,3-trimethylbutane) has spurred particular research interest. Practically, triptane is a high-octane, high-value fuel component, but this transformation also raises fundamental questions: how can such a complex molecule be generated from such a simple precursor with high selectivity? In this Account, we present studies of this reaction carried out in two modes: homogeneously with soluble metal halide catalysts and heterogeneously over solid microporous acid catalysts. Despite their very different compositions, reaction conditions, provenance, and historical scientific context, both processes lead to remarkably similar products and mechanistic interpretations. In both cases, hydrocarbon chains grow by successive methylation in a carbocation-based mechanism. The relative rates of competitive processes-chain growth by methylation, chain termination by hydrogen transfer, isomerization, and cracking-systematically depend upon the structure of the various hydrocarbons produced, strongly favoring the formation of the maximally branched C(7) alkane, triptane. The two catalysts also show parallels in their dependence on acid strength. Stronger acids exhibit higher methanol/DME conversion but also tend to favor chain termination, isomerization, and cracking relative to chain growth, decreasing the preference for triptane. Hence, in both modes, there will be an optimal range: if the acid strength is too low, activity will be poor, but if it is too high, selectivity will be poor. A related reaction, the methylative homologation of alkanes, offers the possibility of upgrading low-value refinery byproducts such as isobutane and isopentane to more valuable gasoline components. With the addition of adamantane, a hydride transfer catalyst that promotes activation of alkanes, both systems effectively catalyze the reaction of methanol/DME with lighter alkanes to produce heavier ones. This transformation has the further advantage of providing stoichiometric balance, whereas the stoichiometry for conversion of methanol/DME to alkanes is deficient in hydrogen and requires rejection of excess carbon in the form of carbon-rich arenes, which lowers the overall yield of desired products. Alternatively, other molecules can serve as sacrificial sources of hydrogen atoms: H(2) on heterogeneous catalysts modified by cations that activate it, and H(3)PO(2) or H(3)PO(3) on homogeneous catalysts. We have interpreted most of the features of these potentially useful reactions at a highly detailed level of mechanistic understanding, and we show that this interpretation applies equally to these two widely disparate types of catalysts. Such approaches can play a key role in developing and optimizing the catalysts that are needed to solve our energy problems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号