Silicon - Nigella sativa (NS) oil is an anti-inflammatory agent in the traditional medicine. In the present study, novel electrospun mats contained NS oil/polyacrylonitrile as a sustained release... 相似文献
Green nanocomposites of regenerated cellulose/exfoliated graphite nanosheets films with low nanofiller loadings were prepared using environmentally benign 1-butyl-3-methylimidazolium chloride (BMIMCl) ionic liquid. X-ray diffraction revealed well developed intercalated nanocomposites. The tensile strength and Young's modulus of the prepared nanocomposites were increased by 97.5% and 172% respectively when 0.75 wt.% and 1 wt.% exfoliated graphite nanosheets were added. The results were validated using the Halpin–Tsai model. The exfoliated graphite nanosheets were unidirectionally aligned in the regenerated cellulose parallel to the surface of the nanocomposites as revealed by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). Also, the TEM and FESEM revealed uniform dispersion of the exfoliated graphite nanosheets and good interaction between the nanofillers and the matrix. The addition of the exfoliated graphite nanosheets enhanced the thermal stability and reduced the water absorption and diffusivity of the nanocomposites. 相似文献
In this study postbuckling behaviors of multiscale composite sandwich doubly curved piezoelectric shell with a flexible core and MR layers by employing Homotopy Perturbation Method in hygrothermal environment has been investigated. By using Reddy third shear deformable theory the face sheets and third-order polynomial theory of the flexible core the strains and stresses are obtained. A mathematical model for the multiscale composite layered shell with a flexible core and magnetorheological layer (MR) that incorporates the nonlinearity of the in-plane and the vertical displacements of the core is assumed. Three-phase composite shells with polymer/Carbon nanotube/fiber and polymer/Graphene platelet/fiber either uniformly or non-uniformly based on different patterns according to Halpin–Tsai model have been considered. The governing equations of multiscale shell have been derived by implementing Hamilton’s principle. Meanwhile, simply supported boundary conditions are employed to the shell. For investigating correctness and accuracy, this paper is validated by other previous researches. Finally, different parameters such as temperature rise, various distribution patterns, magnetic fields and curvature ratio are considered in this article. It is found these parameters have significant effect on the frequency–amplitude curves.
This article explores that the study on bending of magneto-electric-elastic nanobeams relies on nonlocal elasticity theory. The Vlasov’s model foundation utilizes the silica aerogel foundation. The guiding expressions of nonlocal nanobeams in the considered framework are used extensively and where parabolic third-order beam theory is achieved after using Hamilton’s principle. Parametric work is introduced to scrutinize the influence of the magneto-electro-mechanical loadings, nonlocal parameter, and aspect ratio on the deflection characteristics of nanobeams. It is noticed that the boundary conditions, nonlocal parameter, and beam geometrical parameters have significant effects on dimensionless deflection of nanoscale beams.
We consider the output feedback event‐triggered control of an off‐grid voltage source inverter (VSI) with unknown inductance‐capacitance (L ? C) filter dynamics and connected load in the presence of an input disturbance acting at the inverter. Due to uncertain dynamics and unmodeled parameters in the L ? C filter connected to the VSI, we use an adaptive observer to reconstruct the system's states by measuring only the voltage at the output. The control mechanism is constructed based on an impulsive actor/critic framework that approximates the cost, the event‐triggered controller, and the worst case disturbance and generates the desired AC output with the least energy dissipation. We provide rigorous stability proofs and illustrate the applicability of our results through a simulation example. 相似文献
In this paper, structural controllability of a leader–follower multi-agent system with multiple leaders is studied from a graph-theoretic point of view. The problem of preservation of structural controllability under simultaneous failures in both the communication links and the agents is investigated. The effects of the loss of agents and communication links on the controllability of an information flow graph are previously studied. In this work, the corresponding results are exploited to introduce some useful indices and importance measures that help characterize and quantify the role of individual links and agents in the controllability of the overall network. Existing results are then extended by considering the effects of losses in both links and agents at the same time. To this end, the concepts of joint (r,s)-controllability and joint t-controllability are introduced as quantitative measures of reliability for a multi-agent system, and their important properties are investigated. Lastly, the class of jointly critical digraphs is introduced, and it is stated that if a digraph is jointly critical, then joint t-controllability is a necessary and sufficient condition for remaining controllable following the failure of any set of links and agents, with cardinality less than t. Various examples are exploited throughout the paper to elaborate on the analytical findings. 相似文献
Microsystem Technologies - The original version of this article unfortunately contained a mistake. Farzad Ebrahimi was not listed among the authors. 相似文献
An analytical answer to the buckling problem of a composite plate consisted of multi-scale hybrid nanocomposites is presented here for the first time. In other words, the constituent material of the structure is made of an epoxy matrix which is reinforced by both macro- and nanosize reinforcements, namely, carbon fiber (CF) and carbon nanotube (CNT). The effective material properties such as Young’s modulus or density are derived utilizing a micromechanical scheme incorporated with the Halpin–Tsai model. To present a more realistic problem, the plate is placed on a two-parameter elastic substrate. Then, on the basis of an energy-based Hamiltonian approach, the equations of motion are derived using the classical theory of plates. Finally, the governing equations are solved analytically to obtain the critical buckling load of the system. Afterward, the normalized form of the results is presented to emphasize the impact of each parameter on the dimensionless buckling load of composite plates. It is worth mentioning that the effects of various boundary conditions are covered, too. To show the efficiency of presented modeling, the results of this article are compared to those of former attempts.