首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   22篇
  国内免费   3篇
电工技术   13篇
综合类   2篇
化学工业   112篇
金属工艺   18篇
机械仪表   23篇
建筑科学   27篇
能源动力   36篇
轻工业   33篇
水利工程   1篇
石油天然气   13篇
无线电   41篇
一般工业技术   81篇
冶金工业   31篇
原子能技术   9篇
自动化技术   98篇
  2024年   1篇
  2023年   10篇
  2022年   8篇
  2021年   33篇
  2020年   35篇
  2019年   35篇
  2018年   36篇
  2017年   25篇
  2016年   43篇
  2015年   18篇
  2014年   34篇
  2013年   53篇
  2012年   27篇
  2011年   49篇
  2010年   28篇
  2009年   22篇
  2008年   11篇
  2007年   11篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1983年   3篇
  1982年   1篇
  1976年   2篇
排序方式: 共有538条查询结果,搜索用时 15 毫秒
41.
Magnetite nanoparticles with an average particle size of 28.8 nm were synthesized, coated with oleic acid, and characterized using various techniques such as DLS, FT‐IR, SEM, XRD, VSM, and UV‐Vis analysis. A nanofluid consisting of synthesized nanoparticles and 5 wt % acetic acid in toluene as the dispersed phase was prepared and used in the chemical test system, Toluene‐Acetic Acid‐Water, for the single drop extraction in the presence and absence of an external oscillating magnetic field. Influences of various operating and design parameters such as nanoparticle concentration, drop diameter, and the applied current and frequency on the overall mass‐transfer coefficients for the mass‐transfer direction from d→c were investigated carefully. The obtained results were used to propose a general correlation for the mass‐transfer enhancement. It was found that the maximum mass‐transfer enhancement compared with that obtained in the absence of nanoparticles and the oscillating magnetic field is about 259%. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4466–4479, 2016  相似文献   
42.
Kalhori  Fatemeh  Arkan  Elham  Dabirian  Farzad  Abdi  Gisya  Moradipour  Pouran 《SILICON》2019,11(2):593-601
Silicon - Nigella sativa (NS) oil is an anti-inflammatory agent in the traditional medicine. In the present study, novel electrospun mats contained NS oil/polyacrylonitrile as a sustained release...  相似文献   
43.
Green nanocomposites of regenerated cellulose/exfoliated graphite nanosheets films with low nanofiller loadings were prepared using environmentally benign 1-butyl-3-methylimidazolium chloride (BMIMCl) ionic liquid. X-ray diffraction revealed well developed intercalated nanocomposites. The tensile strength and Young's modulus of the prepared nanocomposites were increased by 97.5% and 172% respectively when 0.75 wt.% and 1 wt.% exfoliated graphite nanosheets were added. The results were validated using the Halpin–Tsai model. The exfoliated graphite nanosheets were unidirectionally aligned in the regenerated cellulose parallel to the surface of the nanocomposites as revealed by transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). Also, the TEM and FESEM revealed uniform dispersion of the exfoliated graphite nanosheets and good interaction between the nanofillers and the matrix. The addition of the exfoliated graphite nanosheets enhanced the thermal stability and reduced the water absorption and diffusivity of the nanocomposites.  相似文献   
44.

In this study postbuckling behaviors of multiscale composite sandwich doubly curved piezoelectric shell with a flexible core and MR layers by employing Homotopy Perturbation Method in hygrothermal environment has been investigated. By using Reddy third shear deformable theory the face sheets and third-order polynomial theory of the flexible core the strains and stresses are obtained. A mathematical model for the multiscale composite layered shell with a flexible core and magnetorheological layer (MR) that incorporates the nonlinearity of the in-plane and the vertical displacements of the core is assumed. Three-phase composite shells with polymer/Carbon nanotube/fiber and polymer/Graphene platelet/fiber either uniformly or non-uniformly based on different patterns according to Halpin–Tsai model have been considered. The governing equations of multiscale shell have been derived by implementing Hamilton’s principle. Meanwhile, simply supported boundary conditions are employed to the shell. For investigating correctness and accuracy, this paper is validated by other previous researches. Finally, different parameters such as temperature rise, various distribution patterns, magnetic fields and curvature ratio are considered in this article. It is found these parameters have significant effect on the frequency–amplitude curves.

  相似文献   
45.

This article explores that the study on bending of magneto-electric-elastic nanobeams relies on nonlocal elasticity theory. The Vlasov’s model foundation utilizes the silica aerogel foundation. The guiding expressions of nonlocal nanobeams in the considered framework are used extensively and where parabolic third-order beam theory is achieved after using Hamilton’s principle. Parametric work is introduced to scrutinize the influence of the magneto-electro-mechanical loadings, nonlocal parameter, and aspect ratio on the deflection characteristics of nanobeams. It is noticed that the boundary conditions, nonlocal parameter, and beam geometrical parameters have significant effects on dimensionless deflection of nanoscale beams.

  相似文献   
46.
47.
We consider the output feedback event‐triggered control of an off‐grid voltage source inverter (VSI) with unknown inductance‐capacitance (L ? C) filter dynamics and connected load in the presence of an input disturbance acting at the inverter. Due to uncertain dynamics and unmodeled parameters in the L ? C filter connected to the VSI, we use an adaptive observer to reconstruct the system's states by measuring only the voltage at the output. The control mechanism is constructed based on an impulsive actor/critic framework that approximates the cost, the event‐triggered controller, and the worst case disturbance and generates the desired AC output with the least energy dissipation. We provide rigorous stability proofs and illustrate the applicability of our results through a simulation example.  相似文献   
48.
In this paper, structural controllability of a leader–follower multi-agent system with multiple leaders is studied from a graph-theoretic point of view. The problem of preservation of structural controllability under simultaneous failures in both the communication links and the agents is investigated. The effects of the loss of agents and communication links on the controllability of an information flow graph are previously studied. In this work, the corresponding results are exploited to introduce some useful indices and importance measures that help characterize and quantify the role of individual links and agents in the controllability of the overall network. Existing results are then extended by considering the effects of losses in both links and agents at the same time. To this end, the concepts of joint (r,s)(r,s)-controllability and joint tt-controllability are introduced as quantitative measures of reliability for a multi-agent system, and their important properties are investigated. Lastly, the class of jointly critical digraphs is introduced, and it is stated that if a digraph is jointly critical, then joint tt-controllability is a necessary and sufficient condition for remaining controllable following the failure of any set of links and agents, with cardinality less than tt. Various examples are exploited throughout the paper to elaborate on the analytical findings.  相似文献   
49.
Microsystem Technologies - The original version of this article unfortunately contained a mistake. Farzad Ebrahimi was not listed among the authors.  相似文献   
50.

An analytical answer to the buckling problem of a composite plate consisted of multi-scale hybrid nanocomposites is presented here for the first time. In other words, the constituent material of the structure is made of an epoxy matrix which is reinforced by both macro- and nanosize reinforcements, namely, carbon fiber (CF) and carbon nanotube (CNT). The effective material properties such as Young’s modulus or density are derived utilizing a micromechanical scheme incorporated with the Halpin–Tsai model. To present a more realistic problem, the plate is placed on a two-parameter elastic substrate. Then, on the basis of an energy-based Hamiltonian approach, the equations of motion are derived using the classical theory of plates. Finally, the governing equations are solved analytically to obtain the critical buckling load of the system. Afterward, the normalized form of the results is presented to emphasize the impact of each parameter on the dimensionless buckling load of composite plates. It is worth mentioning that the effects of various boundary conditions are covered, too. To show the efficiency of presented modeling, the results of this article are compared to those of former attempts.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号